Sputtering Coefficients of Beryllium and Tungsten by Various Atoms from Hydrogen to Tungsten

详细

Using computer simulation, the sputtering coefficients of Be and W targets, promising materials for the first wall and divertor in the ITER tokamak, are calculated in a wide range of incident atom energies 10–100 000 eV. The following atoms were chosen as projectiles: H, D, T, He, Be, C, N, O, Ne, Ar, W. A strong influence of the surface profile on the results obtained is shown. The limiting cases of a planar potential barrier (smooth surface) and a spherical potential barrier (rough surface) are considered. Data on the average energy and angular distributions of sputtered atoms were obtained, which are necessary for calculating the influx of impurities into the tokamak plasma. The influx of wall material atoms into the ITER tokamak plasma is estimated when the wall is sputtered by flows of fast deuterium and tritium atoms leaving the plasma.

全文:

受限制的访问

作者简介

V. Mikhailov

Ioffe Institute

Email: babenko@npd.ioffe.ru
俄罗斯联邦, St. Petersburg

P. Babenko

Ioffe Institute

编辑信件的主要联系方式.
Email: babenko@npd.ioffe.ru
俄罗斯联邦, St. Petersburg

A. Shergin

Ioffe Institute

Email: babenko@npd.ioffe.ru
俄罗斯联邦, St. Petersburg

A. Zinoviev

Ioffe Institute

Email: babenko@npd.ioffe.ru
俄罗斯联邦, St. Petersburg

参考

  1. Бабенко П.Ю., Михайлов В.С., Зиновьев А.Н. // Письма в ЖТФ. 2023. Т. 49. №8. С. 42. doi: 10.21883/PJTF.2023.08.55138.19432
  2. Бабенко П.Ю., Михайлов В.С., Шергин А.П., Зиновьев А.Н. // ЖТФ. 2023. Т. 93. №5. С. 709. doi: 10.21883/JTF.2023.05.55467.12-23
  3. Михайлов В.С., Бабенко П.Ю., Шергин А.П., Зиновьев А.Н. // ЖЭТФ. 2023. Т. 163.
  4. Babenko P.Yu., Mironov M.I., Mikhailov V.S., Zinoviev A.N. // Plasma Phys. Control. Fusion. 2020. V. 62. N4. ArtNo: 045020. doi: 10.1088/1361-6587/ab7943
  5. Afanasyev V.I., Mironov M.I., Nesenevich V.G., Petrov M.P., Petrov S.Y. // Plasma Phys. Control. Fusion. 2013. V. 55. N4. P. 045008. doi: 10.1088/0741-3335/55/4/045008
  6. Ziegler J.F., Biersack J.P. SRIM. http://www.srim.org.
  7. Behrisch R., Eckstein W. Sputtering by Particle Bombardment. Berlin: Springer, 2007. doi: 10.1007/978-3-540-44502-9
  8. Clark R.E.H. Atomic and plasma-material interaction data for fusion, V. 7. Part B. Viena: IAEA, 2001.
  9. Granberg F., Byggmästar J., Nordlund K. // J. Nucl. Mater. 2021. V. 556. P. 153158. doi: 10.1016/j.jnucmat.2021.153158
  10. Bjorkas C., Nordlund K. // J. Nucl. Mater. 2013. V. 439. P. 174. doi: 10.1016/j.jnucmat.2013.04.036
  11. Lyashenko A., Safi E., Polvi J., Djurabekova F., Nordlund K. // J. Nucl. Mater. 2020. V. 542. P. 152465. doi: 10.1016/j.jnucmat.2020.152465
  12. Bjorkas C., Juslin N., Timko H., Vortler K., Nordlund K., Henriksson K., Erhart P. // J. Phys.: Condens. Matter. 2009. V. 21. P. 445002. doi: 10.1088/0953-8984/21/44/445002
  13. Прокофьев М.В., Светухин В.В., Тихончев М.Ю. // Изв. Самарского НЦ РАН. 2013. Т. 15. №4. С. 1024.
  14. Зиновьев А.Н., Бабенко П.Ю. // ПЖЭТФ. 2022. Т. 115. №9. С. 603. doi: 10.31857/S1234567822090105
  15. Zinoviev A.N., Nordlund K. // Nucl. Instr. Meth. Phys. Res. Sect. B. 2017. V. 406. P. 511. doi: 10.1016/J.NIMB.2017.03.047
  16. Zinoviev A.N., Babenko P.Yu., Nordlund K. // Nucl. Instr. Meth. Phys. Res. Sect. B. 2021. V. 508. P. 10. doi: 10.1016/j.nimb.2021.10.001
  17. Primetzhofer D., Rund S., Roth D., Goebl D., Bauer P. // Phys. Rev. Lett. 2011. V. 107. N16. P. 163201. doi: 10.1103/PhysRevLett.107.163201
  18. Mann A., Brandt W. // Phys. Rev. B. 1981. V. 24. N9. P. 4999. doi: 10.1103/PhysRevB.24.
  19. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995.
  20. Falcone G., Gullo F. // Phys. Lett. A. 1987. V. 125. Iss. 8. P. 432. doi: 10.1016/0375-9601(87)90178-2
  21. Sigmund P. // Phys. Rev. 1969. V. 184. P. 383. doi: 10.1103/PhysRev.184.383
  22. Behrisch R., Maderlechner G., Scherzer B.M.U., Robinson M.T. // Appl. Phys. 1979. V. 18. Iss. 4. P. 391. doi: 10.1007/BF00899693
  23. Мелузова Д.С., Бабенко П.Ю., Зиновьев А.Н., Шергин А.П. // Письма в ЖТФ. 2020. Т. 46. №24. С. 19. doi: 10.21883/PJTF.2020.24.50422.18487
  24. Yang X., Hassanein A. // Appl. Surf. Sci. 2014. V. 293. P. 187. doi: 10.1016/j.apsusc.2013.12.129
  25. Yamamura Y., Tawara H. // Atom. Data Nucl. Data Tabl. 1996. V. 62. P. 149. doi: 10.1006/ADND.1996.0005
  26. Brezinsek S. // J. Nucl. Mater. 2015. V. 463. P. 11. doi: 10.1016/j.jnucmat.2014.12.007
  27. Afanasyev V.I., Chernyshev F.V., Kislyakov A.I., Kozlovsky S.S., Lyublin B.V., Mironov M.I., Melnik A.D., Nesenevich V.G., Petrov M.P., Petrov S.Ya. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 321. P. 456. doi: 10.1016/j.nima.2010.06.201
  28. Миронов М.И., Чернышев Ф.В., Афанасьев В.И., Мельник А.Д., Наволоцкий А.С., Несеневич В.Г., Петров М.П., Петров С.Я. // Физика плазмы. 2021. Т. 47. №1. С. 29. doi: 10.31857/S0367292121010108
  29. Makarov S., Kaveeva E. // MATEC Web of Conferences. EECE-2018 V. 245 P. 13002. doi: 10.1051/matecconf/201824513002
  30. Gervids V.I., Kogan V.I. // JETP Lett. 1975. V. 21 № 6. P. 150.
  31. Meade D.M. // Nucl. Fusion. 1974. V. 14. Iss. 2. P. 289. doi: 10.1088/0029-5515/14/2/017
  32. Bell K.L., Gilbody H.B., Hughes J.G., Kingston A.E., Smith F.J. // J. Phys. Chem. Ref. Data. 1983. V. 12. Iss.4. P. 891. doi: 10.1063/1.555700
  33. Kwon D.-H., Rhee Y.-J., Kim Y.-K. // Int. J. Mass Spectrom. 2006. V. 252. Iss. 3. P. 213. doi: 10.1016/j.ijms.2006.03.007
  34. Kukushkin A.S., Pacher H.D., Kotov V., Pacher G.W., Reiter D. // Fusion Eng. Des. 2011. V. 86 Iss.12. P. 2865. doi: 10.1016/j.fusengdes.2011.06.009
  35. Senichenkov I.Yu., Kaveeva E.G., Sytova E.A., Rozhansky V.A., Voskoboynikov S.P., Veselova I.Yu., Coster D.P., Bonnin X., Reimold F., ASDEX-Upgrade Team // Plasma Phys. Control. Fusion. 2019. V. 61 Iss.4. P. 045013. doi: 10.1088/1361-6587/ab04d0
  36. Jesko K., Marandet Y., Bufferand H., Gunn J.P., van der Meiden H.J., Ciraolo G. // Contrib. Plasma Phys. 2018. V. 58. Iss. 6–8. P. 798. doi: 10.1002/ctpp.201700186
  37. Rozhansky V., Kaveeva E., Senichenkov I., Vekshina E. // Plasma Phys. Control. Fusion. 2018. V. 60. Iss. 3. P. 035001. doi: 10.1088/1361-6587/aaa11a
  38. Köchl F., Loarte A., de la Luna E., Parail V., Corrigan G., Harting D., Nunes I., Reux C., Rimini F.G., Polevoi A. // Plasma Phys. Control. Fusion. 2018. V. 60. Iss. 7. P. 074008. doi: 10.1088/1361-6587/aabf52

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Shape of the potential barrier for different surfaces: (a) planar barrier (smooth surface), (b) spherical barrier (surface consisting of spicules). The bold arrow indicates the direction of departure of the atomised particle. Dotted arrows show the directions of the electric field force lines

下载 (136KB)
3. Fig. 2. Atomisation coefficients for a beryllium target by H, D, T, He, C, N, O, Ne, Ar atoms for normal beam incidence on the target as a function of the energy of the colliding atoms: (a) - planar barrier, flat surface, (b) - spherical barrier, surface consisting of individual atoms

下载 (285KB)
4. Fig. 3. Atomisation coefficients for a tungsten target by H, D, T, He, C, N, O, Ne, Ar, W atoms for normal incidence as a function of the energy of colliding atoms: (a) - planar barrier, flat surface, (b) - spherical barrier, surface consisting of individual atoms

下载 (294KB)
5. Fig. 4. Dependence of the ratio of the threshold energy for atomisation to sublimation energy on the mass ratio of colliding particles. Results of our calculations: target from Be, open circles - spherical barrier, filled circles - planar barrier; target from W, open squares - spherical barrier, filled squares - planar barrier. Small black dots are the results of [6]. Lines - approximations (see text)

下载 (103KB)
6. Fig. 5. Atomisation coefficient of a beryllium target by atoms: (a) He, (b) Be, (c) O, (d) Ne, (e) Ar as a function of the energy of bombarding particles. Our calculation: for a flat barrier - line with squares, for a spherical barrier - line with circles. The blue solid line is the calculation of the Eckstein group [7]. The dots are the results of experimental work given in the monograph [6]. In Fig. 5a, the dashed line shows the calculation by formula (2) [19]

下载 (320KB)
7. Fig. 6. Atomisation coefficient of a tungsten target by atoms: (a) - He, (b) - Be, (c) - O, (d) - Ne, (e) - Ar and (f) - W as a function of the energy of the bombarding particles. Our calculation: for a flat barrier the line with squares, for a spherical barrier the line with circles. The blue solid line is the calculation of the Eckstein group [6,7]. Dots - results of experimental work given in the monograph [6]. Dashed line - calculation by formula (2) [19]. For the Be-W case, the data of calculations from [22,23] (squares and triangles) using molecular dynamics methods are given; the dashed curve is a calculation using formulas from [24]; the dashed line is a calculation by the SDTrimSP programme from [25]

下载 (378KB)
8. Fig. 7. Dependence of the average energy of the atom sputtered on the initial energy of the bombarding particle under irradiation with different atoms: (a) - Be target, (b) - W target. Solid dots - planar surface barrier, open dots - spherical barrier

下载 (247KB)
9. Fig. 8. Normalised angular distribution of atomised particles for the spherical surface potential barrier: (a) He-Be case; (b) He-W case; (c) W-W case

下载 (291KB)
10. Fig. 9. Normalised angular dependences of atomised particles for the case of a planar potential surface barrier: (a) He-Be case; (b) He-W case; (c) W-W case

下载 (294KB)
11. Fig. 10. Energy spectrum dN/dE of deuterium and tritium atoms bombarding the first wall of the tokamak. θn is the angle of incidence relative to the normal to the surface, φn = 0°. The figure is taken from our work [4]

下载 (100KB)
12. Fig. 11. Dependence of the contribution of fast atoms D and T leaving the plasma on their energy to the atomisation of the Be and W wall for different surface potential barriers. Solid lines - planar barrier, dashed lines - spherical barrier

下载 (129KB)

版权所有 © Russian Academy of Sciences, 2024