Ion-sound waves during the interaction of meteoroid tails with the Earth’s ionosphere

Capa

Citar

Texto integral

Resumo

The ion-acoustic instability in the tails of meteoroids as a result of their passage through the Earth’s atmosphere is studied and the conditions under which it develops are given. The development of this instability occurs as a result of the relative motion of the plasma of meteoroid tails and the dusty plasma of the Earth’s ionosphere. Dust, in turn, creates conditions when this instability can develop in a situation of approximately equal ion and electron temperatures, which is observed in the plasma–dust system under consideration. The mechanism of the excitation of ion-sound waves as a result of the development of the ionacoustic instability in meteoroid tails is shown. The growth rates of the ion-acoustic instability and the characteristic times of its development are found. It is shown that the instability has time to develop during the time of passage of a meteoroid body in the Earth’s atmosphere and the formation of a meteoroid trail, which has values much greater than the time of development of ion-acoustic instability in the system under consideration. The wave vectors and velocities of meteoric bodies, at which the development of the ion-acoustic instability is expected, are found. It is noted that the instability can reach a nonlinear regime at possible large wave amplitudes.

Sobre autores

T. Morozova

Space Research Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: timoroz@yandex.ru
Rússia, Moscow, 117997

S. Popel

Space Research Institute, Russian Academy of Sciences

Email: timoroz@yandex.ru
Rússia, Moscow, 117997

Bibliografia

  1. Бронштэн В.А. Физика метеорных явлений. М.: Наука, 1981. 416 c.
  2. Морозова Т.И., Попель С.И. // Физика плазмы. 2020. Т. 46. С. 993.
  3. Морозова Т.И., Копнин С.И., Попель С.И. // Физика плазмы. 2015. Т. 41. С. 867.
  4. Борисов Н.Д., Копнин С.И., Попель С.И., Морозова Т.И. // Физика плазмы. 2019. Т. 45. C. 346.
  5. Morozova T.I., Popel S.I. // J. Phys.: Conf. Ser. 2021. V. 1787. P. 012052.
  6. Morozova T.I., Kopnin S.I., Popel S.I., Borisov N.D. // Phys. Plasmas. 2021. V. 28. P. 033703.
  7. Морозова Т.И., Копнин С.И., Попель С.И. // Геомагнетизм и аэрономия. 2021. T.61. С. 794.
  8. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. С. 635. doi: 10.31857/S0367292122600406.
  9. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. C. 924. doi: 10.31857/S0367292122600777
  10. Морозова Т.И., Попель С.И. // Физика плазмы. 2023. Т. 49. C. 42. doi: 10.31857/S0367292122601199.
  11. Shukla P.K., Silin V.P. // Physica Scripta. 1992. V. 45. P. 508. doi: 10.1088/0031-8949/45/5/015.
  12. Keay C. S. L. // Science. 1980. V.210. P. 11.
  13. Verveer P., Bland A., Bevan A. W. R. // 63rd Ann. Meteoritical Soc. Meeting. 2000. P. 5233.
  14. Zgrablić G., Vinković D., Gradečak S., Kovačić D., Biliskov N., Grbac N., Andreić Ž., Garaj S. // J. Geophys. Res. 2002. V. 107. P. SIA 11-1. doi: 10.1029/2001JA000310.
  15. Trautner R., Koschny D., Witasse O., Zender J., Knöfel A. // Proceed. Asteroids, Comets, Meteors – ACM 2002. International Conference. 2002 / Ed. Warmbein, B. Noordwijk, Netherlands: ESA, 2002. P. 161.
  16. Spalding R., Tencer J., Sweatt W., Conley B., Hogan R., Boslough M., Gonzales G., Spurný P. // Sci. Reps. 2017. V. 7. P. 41251. doi: 10.1038/srep41251.
  17. Михалев А. В., Белецкий А.Б., Васильев Р.В., Еселевич М.В., Иванов К.И., Комарова Е.С., Подлесный А.В., Подлесный С.В., Сыренова Т.Е. // Солнечно-земная физика. 2019. Т. 5. С. 130.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024