Real-Time Plasma Magnetic Control System with Equilibrium Reconstruction Algorithm in the Feedback for the Globus-M2 Tokamak

Cover Page

Cite item

Full Text

Abstract

To control the plasma shape during a tokamak discharge, it is necessary to calculate the plasma
shape in real-time. The rate requirements for the shape calculations are especially high for tokamaks with a
small radius, such as Globus-M2 (St. Petersburg, Russia). A real-time magnetic plasma control system for
the Globus-M2 tokamak with flux and current distribution identification (FCDI) algorithm for the plasma
equilibrium reconstruction in feedback is presented. The control system contains discrete one-dimensional
and matrix proportional-integral-derivative controllers synthesized by the matrix inequality method using
the plasma LPV model calculated on experimental data, and carries out the coordinated control of the plasma
position and shape as well as the compensation for the scattered field of the central solenoid. The FCDI algorithm
is improved for the operation in the real-time mode, and makes it possible to reconstruct the plasma
shape in 20 μs. The digital control system with a feedback algorithm was simulated on a real-time test bench,
consisting of two Speedgoat Performance Real-Time Target Machines (RTTM), and demonstrated the average
Task Execution Time (TET) value in 67 μs.

About the authors

A. E. Konkov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: konkov@physics.msu.ru
Moscow, Russia

P. S. Korenev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: pkorenev@ipu.ru
Moscow, Russia

Yu. V. Mitrishkin

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow State University

Email: pkorenev@ipu.ru
Moscow, Russia; Moscow, Russia

I. M. Balachenkov

Ioffe Institute, Russian Academy of Sciences

Email: pkorenev@ipu.ru
St. Petersburg, Russia

E. O. Kiselev

Ioffe Institute, Russian Academy of Sciences

Author for correspondence.
Email: pkorenev@ipu.ru
St. Petersburg, Russia

References

  1. Ferron J., Walker M., Lao L., John H.S., Humphreys D., Leuer J. // Nuclear Fusion. 1998. T. 38. C. 1055. https://doi.org/10.1088/0029-5515/38/7/308
  2. Moret J.-M., Duval B., Le H., Coda S., Felici F., Reimerdes H. // Fusion Engineering and Design. 2015. T. 91. C. 1. https://doi.org/10.1016/j.fusengdes.2014.09.019
  3. Huang Y., Xiao B., Luo Z., Yuan Q. // Fusion Engineering and Design. 2018. T. 128. C. 82. https://doi.org/10.1016/j.fusengdes.2018.01.043
  4. Minaev V.B., Gusev V.K., Sakharov N.V., Varfolome-ev V.I. // Nuclear Fusion. 2017. T. 57. C. 066047. https://doi.org/10.1088/1741-4326/aa69e0
  5. Коренев П.С., Коньков А.Е., Митришкин Ю.В., Балаченков И.М., Киселев Е.О., Минаев В.Б., Сахо-ров Н.В., Петров Ю.В. // Письма ЖТФ. 2023. Т. 49. С. 36. https://doi.org/10.21883/PJTF.2023.07.54920.19468
  6. Mitrishkin Y.V., Korenev P.S., Kartsev N.M., Kuzne-tsov E.A., Prokhorov A.A., Patrov M.I. // Control Engineering Practice. 2019. T. 87. C. 97. https://doi.org/10.1016/j.conengprac.2019.03.018
  7. Mitrishkin Y.V., Prokhorov A.A., Korenev P.S., Pat-rov M.I. // Control Engineering Practice. 2020. T. 100. C. 104446. https://doi.org/10.1016/j.conengpraс.2020.104446
  8. Konkov A.E., Mitrishkin Y.V., Korenev P.S., Patrov M.I. // IFACPapersOnLine. 2020. T. 53. C. 7344. https://doi.org/10.1016/j.ifacol.2020.12.1000
  9. Ariola M., Pironti A. Magnetic Control of Tokamak Plasmas. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-29890-0
  10. Wesson J., Campbell D. Tokamaks. Clarendon Press, 2004. (International series of monographs on physics).
  11. Хайрутдинов Р.Р., Лукаш В.Э., Пустовитов В.Д. // Физика плазмы. 2021. Т. 47. С. 1007. https://doi.org/10.31857/s0367292121120039
  12. Пустовитов В.Д. // Физика плазмы. 2019. Т. 45. С. 1088. https://doi.org/10.1134 / s0367292119120072
  13. Swain D., Neilson G. // Nuclear Fusion. 1982. T. 22. C. 1015. https://doi.org/10.1088/0029-5515/22/8/002
  14. Kuznetsov Y., Nascimento I., Galvao R., Yasin I. // Nuclear Fusion. 1998. T. 38. C. 1829. https://doi.org/10.1088/0029-5515/38/12/308
  15. Forsythe G., Malcolm M.M.C. Computer methods for mathematical computations. USA, NJ: Englewood Cliffs, 1977.
  16. Mitrishkin Y.V., Korenev P.S., Konkov A.E., Kruzhkov V.I., Ovsiannikov N.E. // Mathematics. 2021. T. 10. C. 40. https://doi.org/10.3390/math10010040
  17. Boyd S., Hast M., Åström K.J. // Intern. J. Robust Nonlinear Control. 2016. T. 26. T. 1718. https://doi.org/10.1002/rnc.3376.11
  18. Mitrishkin Y., Korenev P., Konkov A., Kartsev N., Smir-nov I. // Fusion Engineering and Design. 2022. T. 174. C. 112993. https://doi.org/10.1016/j.fusengdes.2021.112993
  19. Konkov A.E., Mitrishkin Y.V. // IFAC-PapersOnLine. 2022. T. 55. C. 327. https://doi.org/10.1016/j.ifacol.2022.07.057
  20. Митришкин Ю., Коньков А., Коренев П. // Устойчивость и колебания нелинейных систем управления (конференция Пятницкого): Материалы XVI Международной конференции. 2022. С. 286.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (254KB)
3.

Download (31KB)
4.

Download (95KB)
5.

Download (81KB)
6.

Download (107KB)
7.

Download (227KB)

Copyright (c) 2023 Russian Academy of Sciences