Studying of Filamentation Mechanism for Nanosecond Surface Dielectric Barrier Discharge. Part 1. Local Field Approximation

Cover Page

Cite item

Full Text

Abstract

The goal of this work is to check numerically whether or not the previously proposed mechanism for surface barrier discharge filamentation in nitrogen in the case of positive polarity nanosecond voltage pulse is applicable for similar process in nitrogen and air in the case of negative voltage polarity pulse. The results have shown, that in this case some signs of successful filamentation modeling are present both in nitrogen and air, but the whole dynamics of discharge development is qualitatively different from that one observed in experiment. It is assumed, that the failure of simulation is due to the usage of local field approximation, which is too rough inside a region with steep electron density gradient relevant to filamentation zone.

Full Text

Restricted Access

About the authors

V. R. Solovyov

Moscow Institute of Physics and Technology

Author for correspondence.
Email: vic__sol@mail.ru
Russian Federation, Dolgoprudny, Moscow Region

D. A. Lisitsyn

Moscow Institute of Physics and Technology

Email: vic__sol@mail.ru
Russian Federation, Dolgoprudny, Moscow Region

N. I. Karavaeva

Moscow Institute of Physics and Technology

Email: vic__sol@mail.ru
Russian Federation, Dolgoprudny, Moscow Region

References

  1. Soloviev V.R., Krivtsov V.M. // Plasma Sources Sci. Technol. 2018. V. 27. P. 114001.
  2. Kinefuchi K, Starikovskiy A.Y., Miles R.B. // Physics of Fluids. 2018. V. 30. P. 106105.
  3. Babaeva N.Yu, Tereshonok D.V, Naidis G.V. // Plasma Sources Sci. Technol. 2016. V. 25. P. 044008.
  4. Zhu Y., Starikovskaia S. // Plasma Sources Sci. Technol. 2018. V. 27. P. 124007.
  5. Zhu Y., Wu Y., Wei B., Liang H., Jia M., Song H., Li Y. // J. Phys. D: Appl. Phys. 2019. V. 53. P. 6517.
  6. Bayoda K.D., Benard N., Moreau E. // J. Applied Phys. 2015. V. 118. P. 63301.
  7. Александров Н.Л., Стариковский А.Ю. // Физика плазмы. 2021. Т. 47. С. 126.
  8. Starikovskiy A., Aleksandrov N. // Prog. Energy Combust. Sci. 2013. V. 39. P. 61.
  9. Starikovskaia S.M. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 353001.
  10. Stepanyan S.A., Starikovskiy A.Yu., Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045003.
  11. Shcherbanev S.A., Ding Ch., Starikovskaia S.M., Popov N.A. // Plasma Sources Sci. Technol. 2019. V. 28. P. 065013.
  12. Ding Ch., Khomenko A.Yu., Shcherbanev S.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2019. V. 28. P. 085005.
  13. Shcherbanev S.A., Popov N.A., Starikovskaia S.M. // Combustion and Flame. 2017. V. 176. P. 272.
  14. Ding Ch., Jean A., Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2022. V. 31. P. 045013.
  15. Соловьев В.Р. // Физика плазмы. 2022. Т.48. С.552.
  16. Soloviev V.R., Krivtsov V.M. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 125208.
  17. Soloviev V.R. // J. Phys.: Conf. Ser. 2020. V. 1698. P. 012026.
  18. Soloviev V.R, Anokhin E.M, Aleksandrov N.L. // Plasma Sources Sci. Technol. 2020. V. 29. P. 035006.
  19. Wormeester G., Pancheshnyi S., Luque A., Nijdam S., Ebert U. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 505201.
  20. Железняк M.Б., Мнацаканян A.Х., Сизых С.В. // ТВТ. 1982. Т. 20. C. 423.
  21. Дятко Н.А., Кочетов И.В., Напартович А.П. // Физика плазмы. 1992. Т. 18. С. 888.
  22. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207.
  23. Chng T.L., Lepikhin N.D., Orel I.S, Popov N.A., Starikovskaia S.M. // Plasma Sources Sci. Technol. 2020. V. 29. P. 035017.
  24. Bacri J., Medani A. // Physica B+C. 1982. V. 112. P. 101.
  25. Полак Л.С., Словецкий Д.И., Соколов А.С. // Химия высоких энергий. 1972. T. 6. C. 396.
  26. Смирнов Б.М. Ионы и возбужденные атомы в плазме. М.: Атомиздат, 1974. С. 264, 271.
  27. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука. 1966. С. 394
  28. Lagmich Y., Callegari Th., Pitchford L.C., Boeuf J.P. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 095205.
  29. Soloviev V.R., Krivtsov V.M. // J. Phys.: Conf. Ser. 2017. V. 927. P. 012059.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of surface barrier discharge realisation

Download (86KB)
3. Fig. 2. Schematic diagram of the processes to be taken into account

Download (219KB)
4. Fig. 3. Profiles of ne, E/N (a) and excitation rates of H and C states (b) in the discharge cross section x = 0.01 mm in N2 at V = +40 kV, N/N0 = 4 without correction (1) and with correction (2) of the rate constants of excitation of H and C states

Download (138KB)
5. Fig. 4. Experimental curves of the streamer-filamentary transition in N2 (1) and air (2) for pulses of positive (red circles) and negative (blue triangles) polarity [13]

Download (96KB)
6. Fig. 5. Evolution of the ne profile in the discharge section x = 0.005 mm; nitrogen N2, V = +40 kV, N/N0 = 8 (a); profiles of the drift component of the energy input power jdr E and the flux ratio -jdif /jdr in the discharge section x = 0.005 mm at the moment t = 0.2 ns (b)

Download (154KB)
7. Fig. 6. Evolution of the ne profile in the discharge cross section x = 0.005 mm; air, V = +40 kV, N/N0 = 8

Download (92KB)
8. Fig. 7. Evolution of the ne profile in the x = 0.05 mm discharge cross section in N2 (solid curves) and air (dashed); V = -40 kV, N/N0 = 6 (a); evolution of the excess ionisation source profiles (solid curves) and E/N (dashed) in the x = 0.05 mm discharge cross section in nitrogen N2; V = -40 kV, N/N0 = 6 (b)

Download (184KB)
9. Fig. 8. Spatial distributions of ne in air in units of 1015 cm-3 at times 0.06 (a) and 0.08 ns (b); V = -40 kV, N/N0 = 6

Download (155KB)
10. Fig. 9. Spatial distributions of ne in units of 1015 cm-3 (a) and potential in units of kV (b) in nitrogen at time 0.06 ns; V = -40 kV, N/N0 = 6

Download (157KB)

Copyright (c) 2024 Russian Academy of Sciences