Design of Sound Absorbing Honeycomb Materials with Geometry of Triply Periodic Minimal Surfaces (TPMS)
- 作者: Sysoev E.I.1,2, Sychov M.M.1,3, Shafigullin L.N.4, Dyachenko S.V.1,3
-
隶属关系:
- I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences
- LETI Saint Petersburg State Electrotechnical University
- Saint Petersburg State Institute of Technology (Technical University)
- Kazan Federal University
- 期: 卷 70, 编号 5 (2024)
- 页面: 765-777
- 栏目: АКУСТИЧЕСКАЯ ЭКОЛОГИЯ. ШУМЫ И ВИБРАЦИИ
- URL: https://transsyst.ru/0320-7919/article/view/648443
- DOI: https://doi.org/10.31857/S0320791924050111
- EDN: https://elibrary.ru/XBBTRE
- ID: 648443
如何引用文章
详细
The use of cellular materials with the geometry of triply periodic minimum energy surfaces (TPMES) is proposed for the creation of durable cellular materials with controlled acoustic characteristics. Homogeneous unit cells with the Primitive, Diamond, FRD and Gyroid topologies of different porosity were developed and their acoustic parameters were determined. Using the semi-phenomenological Johnson-Champoux-Allard-Lafarge-Pride model, the sound absorption capacity of materials with this geometry was estimated. It was shown that by varying the size of the unit cell and the thickness of the sample, it is possible to control the acoustic characteristics and the average sound absorption coefficient in the range from 0.2 to 0.8. The reliability of the calculations was confirmed experimentally using additively manufactured samples. The results demonstrate the potential of using TPMES for creating materials with controlled pore geometry to achieve predictable sound absorption characteristics.
全文:

作者简介
E. Sysoev
I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; LETI Saint Petersburg State Electrotechnical University
编辑信件的主要联系方式.
Email: jsysev@gmail.com
俄罗斯联邦, Saint Petersburg; Saint Petersburg
M. Sychov
I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State Institute of Technology (Technical University)
Email: jsysev@gmail.com
俄罗斯联邦, Saint Petersburg; Saint Petersburg
L. Shafigullin
Kazan Federal University
Email: jsysev@gmail.com
俄罗斯联邦, Kazan
S. Dyachenko
I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State Institute of Technology (Technical University)
Email: jsysev@gmail.com
俄罗斯联邦, Saint Petersburg; Saint Petersburg
参考
- Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies – A review // Appl. Mater. Today. 2021. V. 24. P. 101141. https://doi.org/10.1016/j.apmt.2021.101141
- Ashby M.F., Evans T., Fleck N.A., Hutchinson J.W., Wadley H.N.G., Gibson L.J. Metal foams: a design guide. Boston: Elsevier, 2000. 272 p.
- Costanza G., Solaiyappan D., Tata M.E. Properties, Applications and Recent Developments of Cellular Solid Materials: A Review // Materials. 2023. V. 16. № 22. P. 7076. https://doi.org/10.3390/ma16227076
- Akiwate D.C., Date M.D., Venkatesham B., Suryakumar S. Acoustic properties of additive manufactured narrow tube periodic structures // Appl. Acoust. 2018. V. 136. P. 123–131. https://doi.org/10.1016/j.apacoust.2018.02.022
- Peng X., Ji J., Jing Y. Composite honeycomb metasurface panel for broadband sound absorption // J. Acoust. Soc. Am. 2018. V. 144. № 4. P. EL255–EL261. https://doi.org/10.1121/1.5055847
- Xie S., Yang Sh., Yang Ch., Wang D. Sound absorption performance of a filled honeycomb composite structure // Appl. Acoust. 2020. V. 162. P. 107202. https://doi.org/10.1016/j.apacoust.2019.107202
- Li X., Chua J.W., Yu X., Li Z., Zhao M., Wang Z., Zhai W. 3D‐Printed Lattice Structures for Sound Absorption: Current Progress, Mechanisms and Models, Structural‐Property Relationships, and Future Outlook // Adv. Sci. 2024. V. 11. № 4. P. 2305232. https://doi.org/10.1002/advs.202305232
- Wang Y., Li C., Chen X., Zhang C., Jin Q., Zhou G., Wang C., Zhao W. Sound absorption performance based on auxetic microstructure model: A parametric study // Mater. Des. 2023. V. 232. P. 112130. https://doi.org/10.1016/j.matdes.2023.112130
- Deshmukh S., Ronge H., Ramamoorthy S. Design of periodic foam structures for acoustic applications: Concept, parametric study and experimental validation // Mater. Des. 2019. V. 175. P. 107830. https://doi.org/10.1016/j.matdes.2019.107830
- Yang W., An J., Chua C.K., Zhou K. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography // Virtual Phys. Prototyp. 2020. V. 15. № 2. P. 242–249. https://doi.org/10.1080/17452759.2020.1740747
- Kushwaha B., Dwivedi K., Ambekar R.S., Pal V., Jena D.P., Mahapatra D.R., Tiwary C.S. Mechanical and Acoustic Behavior of 3D‐Printed Hierarchical Mathematical Fractal Menger Sponge // Adv. Eng. Mater. 2021. V. 23. № 4. P. 2001471. https://doi.org/10.1002/adem.202001471
- Opiela K.C., Zieliński T.G. Microstructural design, manufacturing and dual-scale modelling of an adaptable porous composite sound absorber // Compos. B: Engineering. 2020. V. 187. P. 107833. https://doi.org/10.1016/j.compositesb.2020.107833
- Li Z., Li X., Chua J.W., Lim C.H., Yu X., Wang Z., Zhai W. Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing // Virtual Phys. Prototyp. 2023. V. 18. № 1. P. e2166851. https://doi.org/10.1080/17452759.2023.2166851
- Shevchenko V.Y., Sychev M.M., Lapshin A.E., Lebedev L.A., Gruzdkov A.A., Glezer A.M. Polymer Structures with the Topology of Triply Periodic Minimal Surfaces. Glass Phys. Chem. 2017. V. 43. P. 608–610. https://doi.org/10.1134/S1087659617060177
- Shevchenko V.Y., Balabanov S.V., Sychev M.M., Karimova L. Prediction of Cellular Structure Mechanical Properties with the Geometry of Triply Periodic Minimal Surfaces (TPMS) // ACS Omega. 2023. V. 8. № 30. P. 26895–26905. https://doi.org/10.1021/acsomega.3c01631
- Arsentev M.Yu., Sysoev E.I., Makogon A.I., Balabanov S.V., Sychev M.M., Hammouri M.H., Moshnikov V.A. High-Throughput Screening of 3D-Printed Architected Materials Inspired by Crystal Lattices: Procedure, Challenges, and Mechanical Properties // ACS Omega. 2023. V. 8. № 28. P. 24865–24874. https://doi.org/10.1021/acsomega.3c00874
- Zhang M., Liu C., Deng M., Li Y., Li J., Wang D. Graded Minimal Surface Structures with High Specific Strength for Broadband Sound Absorption Produced by Laser Powder Bed Fusion // Coatings. 2023. V. 13. № 11. P. 1950. https://doi.org/10.3390/coatings13111950
- Бобровницкий Ю.И., Томилина Т.М. Поглощение звука и метаматериалы (обзор) // Акуст. журн. 2018. Т. 64. № 5. С. 517–525. https://doi.org/10.1134/S1063771018040024
- Агафонов А.А., Коробов А.И., Изосимова М.Ю., Кокшайский А.И., Одина Н.И. Особенности распространения волн Лэмба в клине из АБС-пластика с параболическим профилем // Акуст. журн. 2022. Т. 68. № 5. С. 467–474. https://doi.org/10.1134/S1063771022050025
- Писарев П.В., Паньков А.А., Аношкин А.Н., Ахунзянова К.А. Моделирование акустических процессов взаимодействия ячеек звукопоглощающих конструкций авиационных двигателей // Акуст. журн. 2023. Т. 69. № 6. С. 745–755. https://doi.org/10.1134/S1063771023600912
- Володарский А.Б., Кокшайский А.И., Одина Н.И., Коробов А.И., Михалев Е.С., Ширгина Н.В. Экспериментальные исследования влияния 3D-печати при 100% заполнении на упругие свойства нитевидных образцов полимера PLA // Акуст. журн. 2023. Т. 69. № 4. С. 410–416. https://doi.org/10.1134/S1063771022600693
- He W., Liu M., Peng X., Xin F., Lu T.J. Sound absorption of petal shaped micro-channel porous materials // Phys. Fluids. 2021. V. 33. № 6. P. 063606. https://doi.org/10.1063/5.0053059
- Zieliński T.G., Dauchez N., Boutin T., Leturia M., Wilkinson A., Chevillotte F., Bécot F., Venegas R. Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials // Appl. Acoust. 2022. V. 197. P. 108941. https://doi.org/10.1016/j.apacoust.2022.108941
- Feng J., Fu J., Yao X., He Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications // Int. J. Extreme Manuf. 2022. V. 4. № 2. P. 022001. https://doi.org/10.1088/2631-7990/ac5be6
- Allard J.F., Atalla N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Second Edition. Wiley, 2009. 376 p.
- Opiela K.C., Zieliński T.G., Attenborough K. Limitations on validating slitted sound absorber designs through budget additive manufacturing // Mater. Des. 2022. V. 218. P. 110703. https://doi.org/10.1016/j.matdes.2022.110703
- Levi E., Sgarbi S., Piana E.A. Acoustic Characterization of Some Steel Industry Waste // Materials. Appl. Sci. 2021. V. 11 № 13. P. 5924. https://doi.org/10.3390/app11135924
- Al‐Ketan O., Abu Al‐Rub R.K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices // Adv. Eng. Mater. 2019. V. 21. № 10. P. 1900524. https://doi.org/10.1002/adem.201900524
- Zieliński T.G., Venegas R., Perrot C., Cervenka M., Chevillotte F., Attenborough K. Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. // J. Sound Vib. 2020. V. 483 P. 115441. https://doi.org/10.1016/j.jsv.2020.115441
- Zieliński T.G. Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads // J. Appl. Phys. 2014. V. 116. № 3. P. 034905. https://doi.org/10.1063/1.4890218
- Al‐Ketan O., Abu Al‐Rub R.K. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces // Mater. Des. Process. Commun. 2021. V. 3. № 6. P. e205. https://doi.org/10.1002/mdp2.205
- International Organization for Standardization. ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method // International Organization for Standardization. — 1998.
补充文件
