Amplitude characteristics of Rayleigh-type waves in horizontally inhomogeneous layered media
- Autores: Zhostkov R.А.1, Zharkov D.A.1
-
Afiliações:
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Edição: Volume 70, Nº 6 (2024)
- Páginas: 907-920
- Seção: ACOUSTICS OF STRUCTURALLY INHOMOGENEOUS SOLID MEDIA. GEOLOGICAL ACOUSTICS
- URL: https://transsyst.ru/0320-7919/article/view/648440
- DOI: https://doi.org/10.31857/S0320791924060095
- EDN: https://elibrary.ru/JTLJOA
- ID: 648440
Citar
Resumo
The propagation of a Rayleigh-type surface acoustic wave (SAW) along the free boundary of a layered half-space with a smooth change in its elastic parameters horizontally is considered analytically and numerically. The change in the amplitude of the SAW for the transition of a wave from a single-layer system to a single-layer, single-layer to two-layer and two-layer to two-layer depending on the elastic parameters, as well as the length of the sounding wave, is calculated. It is shown that the amplitude of SAW decreases with an increase in the velocity of longitudinal waves and the density of the medium as it propagates, and with an increase in the velocity of transverse waves in the medium, the amplitude of SAW can both increase and decrease. The change in the amplitude of surfactants associated with a change in the velocity of longitudinal waves is stronger, therefore this parameter should be taken into account in applied methods. It is shown that the magnitude of the dominant wavelength depends on both the geometric and elastic parameters of the system.
Palavras-chave
Texto integral

Sobre autores
R. Zhostkov
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: shageraxcom@yandex.ru
Rússia, 123995, B. Gruzinskaya str., 10, build. 1
D. Zharkov
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: denis.Zharkov2014@yandex.ru
Rússia, 123995, B. Gruzinskaya str., 10, build. 1
Bibliografia
- Park C., Miller R., Xia J. Multichannel analysis of surface waves // Geophysics. 1999. V. 64. № 3. P. 800–808.
- Okada H. Theory of efficient array observation of microtremors with special reference to the SPAC method // Exploration geophysics. 2006. V. 37. № 1. P. 73–85.
- Горбатиков А.В., Барабанов В.Л. Опыт использования микросейсм для оценки состояния верхней части земной коры // Физика Земли. 1993. № 7. С. 85–90.
- Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface // QR of RTRI. 1989. V. 30. № 1. P. 25–33.
- Presnov D.A., Sobisevich A.L., Shurup A.S. Model of the Geoacoustic Tomography Based on Surface-type Waves // Physics of Wave Phenomena. 2016. V. 24. № 3. P. 249–254.
- Викторов И.А., Каёкина Т.М. Рассеяние ультразвуковых рэлеевских волн на моделях поверхностных дефектов // Акуст. журн. 1964. Т. 10. № 1. С. 30–33.
- Кокшайский А.И., Коробов А.И., Ширгина Н.В. Диагностика упругих свойств плоской границы двух шероховатых сред поверхностными акустическими волнами // Акуст. журн. 2017. Т. 63. № 2. С. 152–157.
- Горбатиков А.В., Цуканов А.А. Моделирование волн Рэлея вблизи рассеивающих скоростных неоднородностей. Изучение возможностей метода микросейсмического зондирования // Физика Земли. 2011. № 4. С. 96–112.
- Malischewsky P., Scherbaum F. Love’s Formula and H/V-ratio (Ellipticity) of Rayleigh Waves // Wave Motion. 2004 V. 40 № 1. P. 57–67.
- Жостков Р.А., Преснов Д.А., Шуруп А.С., Собисевич А.Л. Сравнение микросейсмического зондирования и томографического подхода при изучении глубинного строения Земли // Изв. Росс. Акад. наук. Сер. физ. 2017. Т. 81. № 1. С. 72–75.
- Babich V.M., Kirpichnikova N.Y. A new approach to the problem of the Rayleigh wave propagation along the boundary of a non-homogeneous elastic body // Wave Motion. 2004 V. 40. № 3. P. 209–223.
- Жэн Б.-С., Лу Л.-Ю. Нормальные волны в слоистом упругом полупространстве // Акуст. журн. 2003. Т. 49. № 4. С. 501–513.
- Жэн Б.-С., Лу Л.-Ю. Волны Рэлея и обнаружение низкоскоростных слоев в слоистом полупространстве // Акуст. журн. 2003. Т. 49. № 5. С. 613–625.
- Zhang B., Yu M., Lan C.Q., Xiong W. Elastic wave and excitation mechanism of surface waves in multilayered media // J. Acoust. Soc. Am. 1996. V. 100. № 6. P. 3527–3538.
- Chen X. A systematic and efficient method of computing normal mode for multi-layered half-space // Geophysical J. Int. 1993. V. 115. P. 391–409.
- Кейлис-Борок В.И. О поверхностных волнах в слое, лежащем на упругом полупространстве // Известия АН СССР. Сер. геофиз. 1951. Т. 17. № 2. С. 17–39.
- Преснов Д.А., Жостков Р.А., Гусев В.А., Шуруп А.С. Дисперсионные зависимости упругих волн в покрытом льдом мелком море // Акуст. журн. 2014. Т. 60. № 4. С. 426–436.
- Лебедев А.В., Манаков С.А. Точность оценки параметров слоистой среды при использовании когерентного векторного приема поверхностной волны Рэлея // Акуст. журн. 2022. Т. 68. № 1. С. 68–82.
- Собисевич А.Л., Преснов Д.А. О решении прямой задачи для определения параметров волн релеевского типа в слоистой геофизической среде // Докл. Рос. Акад. наук. Науки о Земле. 2020. Т. 492. № 2. С. 72–76.
- Разин А.В., Собисевич А.Л. Геоакустика слоистых сред. М.: Федеральное государственное бюджетное учреждение науки Институт физики Земли им. О.Ю. Шмидта Российской академии наук, 2012. 210 с.
- Яновская Т.Б. К теории метода микросейсмического зондирования // Физика Земли. 2017. № 6. С. 18–23.
- Викторов И.А. Звуковые поверхностные волны в твердых телах. М.: Наука, 1981. 288 с.
- Бреховских Л.М. Акустика слоистых сред. М.: Наука, 1989. 416 с.
- Оливер А. Поверхностные акустические волны. М.: Мир, 1981. 390 с.
- Мальцев И.А. Основы линейной алгебры. М.: Наука, 1970. 400 с.
- Яновская Т.Б. Поверхностно-волновая томография в сейсмологических исследованиях. М.: Наука, 2015. 164 с.
- Разин А.В. Возбуждение поверхностных акустических волн Рэлея и Стонели распределёнными сейсмическими источниками // Изв. ВУЗов. Радиофизика. 2010. Т. 53. № 2. С. 91–109.
- Жостков Р.А. Восстановление неоднородностей среды при микросейсмическом зондировании вдоль криволинейной поверхности // Акуст. журн. 2019. Т. 65. № 5. С. 708–720.
- Чуркин А.А., Лозовский И.Н., Жостков Р.А. Численное моделирование сейсмоакустических методов контроля качества свай // Изв. Росс. Акад. наук. Сер. физ. 2020. Т. 84. № 1. С. 124–127.
- Amestoy P.R., Duff I.S., l'Excellent J.-Y. Multifrontal parallel distributed symmetric and unsymmetric solvers // Computer Methods in Applied Mechanics and Engineering. 2000. V. 184. № 2–4. P. 501–520.
- Гусев В.А., Жарков Д.А. Акустические поля и радиационные силы, создаваемые стоячей поверхностной волной в слоистых вязких средах // Акуст. журн. 2022. Т. 68. № 6. С. 589–604.
- Атапин В.Г., Пель А.Н., Темников А.И. Сопротивление материалов. Базовый курс. Дополнительные главы. М.: Новосибирский государственный технический университет (НГТУ), 2011. 508 с.
- Dziewonski A., Anderson D. Preliminary Reference Earth Model // Physics of the Earth and Planetary Interiors. 1981. V. 25. P. 297–356.
- Лебедев А.В., Манаков С.А., Дубовой Д.В. Рассеяние волны Рэлея на приповерхностном включении в упругом полупространстве // Изв. ВУЗов. Радиофизика. 2023. Т. 66. № 5–6. С. 483–504.
- Li S., Huang M., Song Y., Bo Lan, Li X. Theoretical and numerical modeling of Rayleigh wave scattering by an elastic inclusion // J. Acoust. Soc. Amer. 2023. V. 153. № 4. P. 2336–2350.
- Овсюченко А.Н., Горбатиков А.В., Рогожин Е.А., Андреева Н.В., Степанова М.Ю., Ларьков А.С., Сысолин А.И. Микросейсмическое зондирование и активные разломы керченско-таманского региона // Физика Земли. 2019. № 6. С. 84–95.
- Белянкова Т.И., Калинчук В.В. К проблеме анализа динамических свойств слоистого полупространства // Акуст. журн. 2014. Т. 60. № 5. С. 492–504.
Arquivos suplementares
