Application of a piezoelectric resonator to determine the parameters of a contacting liquid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of conducting and non-conducting liquids on the characteristics of a piezoelectric resonator with a longitudinal electric field immersed in a liquid was investigated. The resonator, operating on a longitudinal acoustic mode with a resonant frequency of about 4 MHz, was a disk made of X-cut langasite with round electrodes on both sides. The resonator was fixed at the base of a container filled with the liquid under study. Then, the real and imaginary parts of its electrical impedance were measured as a function of frequency using a vector network analyzer. A modernized electromechanical circuit of such a resonator was constructed, taking into account the effect of conductivity and permittivity of the liquid on the change in the effective area of the electrodes. The possibility of determining the elastic modulus, viscosity coefficient of the studied liquid and the values of additional elements of the equivalent circuit by fitting the calculated frequency dependences of the complex electrical impedance of a resonator immersed in liquid to the measured dependences is demonstrated.

Texto integral

Acesso é fechado

Sobre autores

А. Semyonov

Federal State Budgetary Institution of Science Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: zai-boris@yandex.ru

Saratov Branch

Rússia, 410019, Saratov

B. Zaitsev

Federal State Budgetary Institution of Science Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: zai-boris@yandex.ru

Saratov Branch

Rússia, 410019, Saratov

A. Teplykh

Federal State Budgetary Institution of Science Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: zai-boris@yandex.ru

Saratov Branch

Rússia, 410019, Saratov

I. Borodina

Federal State Budgetary Institution of Science Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: zai-boris@yandex.ru
ORCID ID: 0000-0002-4136-7517

Saratov Branch

Rússia, 410019, Saratov

Bibliografia

  1. Arlett J.L., Myers E.B., Roukes M.L. Comparative advantages of mechanical biosensors // Nat. Nanotechnol. 2011. V. 6. P. 203–215.
  2. Barlow A.J., Lamb J., Matheson A.J., Padmini P.R.K.L. and Richter J. Viscoelastic Relaxation of Supercooled Liquids // I. Proc. R. Soc. Lond. A. 1967. V. 298. P. 467–480. doi: 10.1098/rspa.1967.0115
  3. Lin Q., Cai F., Li F., Zhao D., Xia X., Zhou W., Meng L., Zheng H. The compact acoustic liquid sensor based on the circumferential modes of a cylindrical shell // Sens. Actuators A. 2020. V. 304. 111843.
  4. Kondoh J., Shiokawa S. SH-SAW taste sensor based on acoustoelectric interaction // Proc. IEEE Int. Ultrasonics Symposium 31 October-3 November 1993. USA. MD. Baltimore. P. 421–424.
  5. Kondoh J., Shiokawa S. New application of shear horizontal surface acoustic wave sensors to identifying fruit juices // Jpn. J. Appl. Phys. 1994. V. 33. P. 3095–3099.
  6. Kondoh J., Muramatsu T., Nakanishi T., Shiokawa S. Development of surface acoustic wave liquid sensing system and application for Japanese tea measurements // Proc. IEEE Int. Ultrasonics Symposium 7–10 October 2001. USA. GA. Atlanta. P. 497–501.
  7. Tada K., Nozava T., Kondoh J. Real time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid // Jap. J. Appl. Phys. 2016. V. 37. 07JD15.
  8. Kondoh J., Nakayama K., Kuznetsova I. Study of frequency dependence of shear horizontal surface acoustic wave sensor for engine oil measurement // Sens. Actuators A Phys. 2021. V. 325. 112503.
  9. Zaitsev B.D., Joshi S.G., Kuznetsova I.E., Borodina I.A. Acoustic waves in piezoelectric plates bordered with viscous and conductive liquids // Ultrasonics. 2001. V. 39. P. 45–50.
  10. Wu J., Zhu Z. Sensitivity of Lamb wave sensors in liquid sensing // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2002. V. 43. P. 71–72.
  11. Anisimkin I.V., Anisimkin V.I. Attenuation of acoustic normal modes in piezoelectric plates loaded by viscous liquids // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006. V. 53. P. 1487–1492.
  12. Anisimkin V.I. Sensing properties of the Anisimkin Jr. acoustic modes in uncoated ST-quartz plates // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013. V. 60. P. 2204–2207.
  13. Voronova N.V., Anisimkin V.I. Three-Parameter Liquid Sensor Based on Surface and Plate Acoustic Waves // Proc. Joint Conf. of the European Frequency and Time Forum and IEEE Int. Frequency Control Symposium 9–13 July 2017. France. Besancon. P. 343–344.
  14. Caliendo C., Hamidullah M. Guided acoustic wave sensors for liquid environments // J. Phys. D Appl. Phys. 2019. V. 52. 153001.
  15. Anisimkin V.I., Voronova N.V. New modification of the acoustic Lamb waves and its application for liquid and ice sensing // Ultrasonics. 2022. V. 116. 106496.
  16. McCann D.F., McCann J.M., Parks J.M., Frankel D.J., Pereira da Cunha M., Vetelino J.F. A lateral-field-excited LiTaO3 high frequency bulk acoustic wave sensor // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006. V. 56. P. 779–787.
  17. Wark M., Kalanyan B., Ellis L., Fick J., Connel L., Neivandt D., Vetelino J. A lateral field excited acoustic wave sensor for the detection of saxitoxin in water // Proc. IEEE Int. Ultrasonics Symposium 28–31 October 2007. USA. NY. New York. P. 1217–1220.
  18. Vetelino J.F. A lateral field excited acoustic wave sensor platform // Proc. IEEE Int. Ultrasonics Symposium 11–14 October 2010. USA. GA. San Diego. P. 2269–2272.
  19. French L.A., FitzGerald, M., Vetelino J.F. An Equivalent Circuit Model for a Liquid Loaded Lateral-Field Excited Acoustic Wave Sensor // Proc. IEEE Int. Ultrasonics Symposium 19 October 2011. USA. FL. Orlando. P. 1194–1199.
  20. Ma T., Wang J., Du J., Yuan L., Qian Z., Zhang Z., Zhang C. Lateral-field-excited bulk acoustic wave sensors on langasite working on different operation modes // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013. V. 60. P. 864–867.
  21. Zaitsev B.D., Shikhabudinov A.M., Teplykh, A.A., Kuznetsova I.E. Liquid sensor based on a piezoelectric lateral electric field-excited resonator // Ultrasonics. 2015. V. 63. P. 179–183.
  22. Borodina I.A., Zaitsev B.D., Teplykh A.A. Influence of the conductivity of a liquid contacting with a lateral electric field excited resonator based on PZT ceramics on its characteristics // Ultrasonics. 2020. V. 102. 106059.
  23. Zhao Z., Wang B., Qian Z., Kuznetsova I., Ma T., Yong Y.K. Design Considerations for Frequency Shifts in a Laterally Finite FBAR Sensor in Contact With the Newtonian Liquid // IEEE Trans Ultrason, Ferroelectr. and Freq. Cont. 2020. V. 67. P. 2402–2412.
  24. Wang M., Shi H., Ma T., Qian Z., Kuznetsova I., Yuan L., Wang J., Du J., Zhang C. High-frequency vibration analysis of LiTaO3 piezoelectric plates excited by lateral electric fields produced by surface electrodes under viscous liquid loadings for sensing // Smart Mater. Struct. 2020. V. 29. 045004.
  25. Zaitsev B.D., Borodina I.A., Teplykh A.A. Compact liquid analyzer based on a resonator with a lateral excitation electric field // Ultrasonics. 2022. V. 126. 106814.
  26. Kanazava K.K., Gordon J.G. II. The oscillation frequency of a quartz resonator in contact with a liquid // Anal. Chim. Acta. 1985. V. 175. P. 99–105.
  27. Kanazava K.K., Gordon J.G. II. Frequency of a Quartz Microbalance in Contact with Liquid // Anal. Chem. 1985. V. 57. P. 1770–1771.
  28. Nomura T., Watanabe M., West T.S. Behavior of piezoelectric quartz crystals in solutions with the applications to the determination of iodide // Anal. Chim. Acta. 1985. V. 175. P. 107–116.
  29. Josse F., Shana Z.A., Radtke D.E., Haworth D.T. Analysis of piezoelectric bulk acoustic wave resonators as detectors in viscous conductive liquids // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1990. V. 37. P. 359–368.
  30. Balantine D.S., White R.M., Martin S.J., Ricco A.J., Frye G.C., Zellers E.T., Wohltjen H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications. USA. NY. New-York: John Willey & Sons, 1997.
  31. Semyonov A., Zaitsev B., Teplykh A., Borodina I. Study of the Acoustic Characteristics of Suspensions Based on Glycerol and Synthetic Diamond Microparticles Using a Resonator with a Longitudinal Electric Field // Acoust. Phys. 2023. V. 69. № 6. P. 788–797.
  32. Semyonov A., Zaitsev B., Teplykh A., Borodina I. The effect of the glycerol – Based suspension on the characteristics of resonators excited by a longitudinal electric field // Sensors. 2023. V. 23. P. 608.
  33. Semyonov A.P., Zaitsev B.D., Teplykh A.A., Borodina I.A. Determination of Electrical and Mechanical Properties of Liquids Using a Resonator with a Longitudinal Electric Field // Sensors. 2024. V. 24. P. 793. https://doi.org/10.3390/s24030793.
  34. Шамсутдинова Е.С., Анисимкин В.И., Фионов А.С., Смирнов А.В., Колесов В.В., Кузнецова И.Е. Совершенствование методов исследования электрофизических и вязкостных свойств жидкостей // Акуст. журн. 2023. Т. 69. № 1. С. 56–62.
  35. Зайцев Б.Д., Бородина И.А., Теплых А.А., Семёнов А.П. Определение скорости и затухания акустической волны в жидкостях с различным акустическим импедансом с помощью акустического интерферометра // Акуст. журн. 2023. Т. 69. № 4. С. 438–445.
  36. Кольцова И.С., Хомутова А.С. Акустоэлектронный метод измерения скорости ультразвуковых волн в жидкостях // Акуст. журн. 2023. Т. 69. № 3. С. 317–321.
  37. Семёнов А.П., Зайцев Б.Д., Теплых А.А., Бородина И.А. Исследование акустических характеристик суспензий на основе глицерина и микрочастиц синтетического алмаза с помощью резонатора с продольным электрическим полем // Акуст. журн. 2023. Т. 69. № 6. С. 702–712.
  38. Минаков А.В., Пряжников М.И., Дамдинов Б.Б., Немцев И.В. Исследование объемной вязкости наносуспензий методом акустической спектроскопии // Акуст. журн. 2022. Т. 68. № 2. С. 182–189.
  39. Бородина И.А., Зайцев Б.Д., Алсовэйди А.К.М., Караваева О.А., Гулий О.И. Биологический датчик на основе акустической щелевой моды с использованием микробных клеток для определения ампициллина // Акуст. журн. 2022. Т. 68. № 6. С. 583–588.
  40. Royer D., Dieulesaint E. Elastic Waves in Solids II. Generation, Acousto-Optic Interaction, Applications. USA. NY. New York. Germany. Berlin/Heidelberg: Springer, 1999. ISBN1439–2674
  41. Kuznetsova I.E., Zaitsev B.D., Shikhabudinov A.M. Elastic and viscosity properties of Nanocomposite Films Based on Low-Density Polyethylene // Trans. Ultrason. Ferroelectr. Freq. Control. 2010. V. 57. № 9. 2099.
  42. Kuznetsova I., Zaitsev B., Krasnopolskaya L., Teplykh A., Semyonov A., Avtonomova A., Ziangirova M., Smirnov A., Kolesov V. Influence of humidity on the acoustic properties of mushroom mycelium films used as sensitive layers for acoustic humidity sensors // Sensors. 2020. V. 20. № 9. 2711.
  43. Ганапольский В.В., Касаткин Б.А., Легуша Ф.Ф., Прудько Н.И., Пугачев С.И. Керамические преобразователи. Справочник. Л.: Судостроение, 1984. 256 с.
  44. Chilla E., Flannery C.M., Frohlich H.-J. and Straube U. Elastic properties of langasite-type crystals determined by bulk and surface acoustic waves // J. Appl. Phys. 2001. V. 90. № 12. 6084.
  45. Григорьев И.С., Мейлихов Е.3. Физические величины. М.: Энергоатомиздат, 1991. 1232 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Liquid container with a resonator fixed to the base.

Baixar (124KB)
3. Fig. 2. Frequency dependences of (a) the real and (b) the imaginary parts of the electrical impedance of a resonator made of X-cut langasite without load (blue – experiment, pink – theory).

Baixar (115KB)
4. Fig. 3. Equivalent circuit of a resonator with a longitudinal electric field immersed in a liquid, taking into account the additional edge capacitance Ca and additional resistance Ra.

Baixar (154KB)
5. Fig. 4. Equivalent circuit of a resonator immersed in liquid, taking into account the additional capacitance Ca and additional resistance Ra, which are associated with the presence of liquid, as well as the additional capacitance C0l, associated with the increase in the effective area of ​​the electrodes.

Baixar (153KB)
6. Fig. 5. Frequency dependences (a, c, d) of the real and (b, d, e) of the imaginary parts of the electrical impedance of a langasite resonator immersed in (a, b) water, (c, d) TS-1 kerosene and (d, e) acetone (blue color – experiment, orange color – theory)

Baixar (373KB)
7. Fig. 6. Dependences of the resonant frequency of (a) parallel and (b) series resonances, (c) maximum values ​​of the real part of the electrical impedance and (d) admittance of a langasite resonator immersed in a liquid on the conductivity of the liquid (1 – water, 2 – water-glycerin mixture β=44%, 3 – water-glycerin mixture β=65%, 4 – water-glycerin mixture β=75%).

Baixar (242KB)
8. Fig. 7. Frequency dependences (a, c) of the real and (b, d) of the imaginary parts of the electrical impedance of a langasite resonator immersed (a, b) in water with a conductivity of 27 μS/cm, (c, d) in a water-glycerin mixture β=75% with a conductivity of 123 μS/cm (blue color – experiment, red color – theory).

Baixar (247KB)
9. Fig. 8. Dependence of the additional capacity Ca on the experimentally obtained value εl for non-conductive liquids presented in Table 3.

Baixar (48KB)
10. Fig. 9. (a) – Dependence of additional capacity Ca on the conductivity of liquids: 1 – water, 2 – water-glycerin mixture β=44%, 3 – water-glycerin mixture β=65%, 4 – water-glycerin mixture β=75%. (b) – Dependence of the arithmetically average conductivity values ​​for each mixture of additional capacity on the experimentally obtained value εl.

Baixar (111KB)
11. Fig. 10. Dependences of additional resistance Ra on the conductivity of liquids: 1 – water, 2 – water-glycerin mixture β=44%, 3 – water-glycerin mixture β=65%, 4 – water-glycerin mixture β=75%.

Baixar (63KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024