The significance of P.V. Simonov’s “need-information theory of emotions” in the development of modern neurobiology of behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The current paper shows the importance of the need-information theory of P.V. Simonov in the development of modern neurobiology of behavior. The essence of the theory and the underlying fundamental principles of the organization of behavior-environmental uncertainty, probabilistic predictions of reinforcement are briefly described. The first section reviews the current data on the important role of uncertain environments and probabilistic predictions in organization of behavior. Attention is drawn to the reinforcement prediction error and its significance in the organization of both social and individual behavior, as well as its role in the consolidation and reconsolidation of memory. The second section shows the influence of need-information theory on the development of the theoretical and experimental basis of individual differences, with a scheme presented for explaining such differences based on the fundamental principles of theory. The next section examines the role of need-information theory in understanding the mechanisms of decision-making under risk conditions, and the importance of the theory as a conceptual basis for the new developing field of science – neuroeconomics. And finally, the 4th section considers in detail the model of emotional resonance (contagion) proposed by P. Simonov, and modern views on social behavior, in general, and the altruistic and selfish behavior of rodents, in particular.

Full Text

Restricted Access

About the authors

P. M. Balaban

Institute of Higher Nervous Activity and Neurophysiology of RAS

Author for correspondence.
Email: pmbalaban@gmail.com
Russian Federation, 513485, Moscow

G. A. Grigoryan

Institute of Higher Nervous Activity and Neurophysiology of RAS

Email: grigorygrigoryan@hotmail.com
Russian Federation, 513485, Moscow

References

  1. Винарская А.Х., Зюзина А.Б., Балабан П.М. Оксид азота необходим для лабилизации (дестабилизации) обстановочной памяти у улиток // Журн. высш. нерв. деят. 2021. Т. 71. С. 286–292. https://doi.org/10.31857/S004446772102012X
  2. Григорьян Г.А. Проблема подкрепления. От целостного поведения к нейрохимическим основам и развитию психопатологий // Журн. высш. нерв. деят. 2005. Т. 55. № 5. С. 685–698.
  3. Григорьян Г.А. Память и депрессии // Журн. высш. нерв. деят. 2006. Т. 56. № 4. С. 556–570.
  4. Григорьян Г.А., Мержанова Г.Х. Отражение индивидуально-типологических различий в разных фазах процесса обучения и сопутствующие им изменения передачи дофамина в мезолимбической системе мозга // Журн. высш. нерв. деят. 2006. Т. 56. № 1. С. 22–37.
  5. Зюзина А.Б., Балабан П.М. Угашение и реконсолидация памяти // Журн. высш. нервн. деят. 2015. Т. 65. № 5. С. 564–576. https://doi.org/10.7868/S0044467715050172
  6. Кулешова Е.П., Мержанова Г.Х., Григорьян Г.А. Влияние селективной блокады дофаминергических D1/D2 рецепторов на поведение выбора при двух разных по ценности подкреплений // Журн. высш. нерв. деят. 2006. Т. 56. № 5. С. 641–652.
  7. Кулешова Е.П., Мержанова Г.Х., Куликов М.А., Григорьян Г.А. Галоперидол не меняет стратегию выбора двух разных по ценности подкреплений у кошек // Журн. высш. нерв. деят. 2006. Т. 56. № 3. С. 392–400.
  8. Мержанова Г.Х. Локальные и распределенные нейронные сети и индивидуальность // Рос. физиол. журн. 2001. Т. 87. № 6. С. 873–884.
  9. Пигарева М.Л. Лимбические механизмы переключения (гиппокамп и миндалина). М.: Наука, 1978. 151 с.
  10. Симонов П.В. О соотношении двигательного и вегетативного компонентов условного оборонительного рефлекса у человека. В кн.: Центр. и периф. механизмы двигат. деят. животных и человека. М.: Наука, 1964.
  11. Симонов П.В. Что такое эмоция? М.: Наука, 1966. 640 с.
  12. Симонов П.В. Теория отражения и психофизиология эмоций. М.: Наука, 1970. 141 с.
  13. Симонов П.В. Условные реакции эмоционального резонанса у крыс. В кн.: Нейрофизиологический подход к анализу внутривидового поведения. М.: Наука, 1976. С. 6.
  14. Симонов П.В. Избранные труды. Т. 1. Мозг, эмоции, потребности, поведение. М.: Наука. 2004. 437 с.
  15. Симонов П.В. Эмоциональный мозг. М.: Наука. 1981. 211 с.
  16. Симонов П.В. Условные реакции эмоционального резонанса у крыс // Нейрофизиологический подход к анализу внутривидового поведения. М.: Наука. 1976. С. 6–26.
  17. Симонов П.В. Высшая нервная деятельность человека. М.: Наука. 1975. 173 с.
  18. Bariselli S., Hörnberg H., Prévost-Solié C., Musardo S. et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction // Nat. Commun. 2018. V. 9. № 1. P. 3173. https://doi.org/10.1038/s41467-018-05382-3
  19. Bechara A., Damasio H., Tranel D., Damasio A.R. Deciding advantageously before knowing the advantageous strategy // Science. 1997. V. 275. P. 1293–1295. https://doi.org/10.1126/science.275.5304.1293
  20. Ben-Ami Bartal I., Decety J., Mason P. Empathy and pro-social behavior in rats // Science. 2011. V. 334. № 6061. P. 1427–1430. https://doi.org/10.1126/science.1210789
  21. Cardinal R.N., Daw N., Robbins T.W., Everitt B.J. Local analysis of behaviour in the adjusting-delay task for assessing choice of delayed reinforcement // Neural Netw. 2002. V.15. № 4–6. P. 617–634. https://doi.org/10.1016/s0893-6080(02)00053-9
  22. Сrockett M J., Matthew L., Lieberman D., Tabibnia G., Robbins T. W. Impulsive choice and altruistic punishment are correlated and increase in tandem with serotonin depletion // Emotion. 2010. V. 10. № 6. P. 855–862. https://doi.org/10.1037/a0019861
  23. Dalley J.W., Cardinal R.N., Robbins T.W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates // Neurosci. Biobehav. Rev. 2004. V. 28. № 7. P. 771–784. https://doi.org/10.1016/j.neubiorev.2004.09.006
  24. Daruna J.H., Barnes P.A. A neurodevelopmental view of impulsivity.
  25. The Impulsive сlient: theory, research and treatment. Eds. W.G. McCown, J.L. Johnson., M.B. Shure. Am. Psychol. Assoc. Washington. DC, 1993.
  26. De Boer S.F., Koolhaas J.M. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis // Eur. J. Pharmacol. 2005. V. 526. № 1–3. P. 125–139. https://doi.org/10.1016/j.ejphar.2005.09.065
  27. De Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes // Addict. Biol. 2009. V. 14. № 1. P. 22–31. https://doi.org/10.1111/j.1369-1600.2008.00129.x
  28. Deng Y., Song D., Ni J., Qing H., Quan Z. Reward prediction error in learning-related behaviors // Front. Neurosci. 2023. V. 17. 1171612. https://doi.org/10.3389/fnins.2023.1171612
  29. Ergo K., De Loof E., Verguts T. Reward prediction error and declarative memory // Trends Cogn. Sci. 2020. V. 24. P. 388–397. https://doi.org/10.1016/j.tics.2020.02.009
  30. Eysenck H. Personality and psychosomatic diseases // Acta Nerv. Super. 1981. V. 23. P. 112–129.
  31. Exton-McGuinness M.T., Lee J.L., Reichelt A.C. // Behav. Brain Res. 2015. V. 278. P. 375–384. https://doi.org/10.1016/j.bbr.2014.10.011
  32. Fernández R.S., Boccia M.M., Pedreira M.E. The fate of memory: reconsolidation and the case of prediction error // Neurosci. Biobehav Rev. 2016. V. 68. P. 423–441. https://doi.org/10.1016/j.neubiorev.2016.06.004
  33. Fiorillo C.D., Tobler P.N., Schultz W. Discrete coding of reward probability and uncertainty by dopaminergic neurons // Science. 2003. V. 299. P. 1898–1902. https://doi.org/10.1126/science.1077349
  34. Hariri A.R., Brown S.M., Williamson D.E., Flory J.D. et al. Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity // J. Neurosci. 2006. V. 26. № 13. P. 213–217. https://doi.org/10.1523/JNEUROSCI.3446-06.2006
  35. Gray J.A., McNaughton N. The Neuropsychology of anxiety. Second edition. Oxford: Oxford Med. Publ. 2000. 242p.
  36. Green L., Sayderman M. Choice between rewards differing in amouin and delay toward a choice model of self-control // J. Exp. Anal. Behav. 1980. V. 34. P. 135–147. https://doi.org/10.1901/jeab.1980.34-135
  37. Grigoryan G.A. The systemic effects of the enriched environment on the conditioned fear reaction // Frontiers in Behavioral Neuroscience. REVIEW article, Front. Behav. Neurosci. 2023. V. 17. P. 1–13. https://doi.org/10.3389/fnbeh.2023.1227575
  38. Gunaydin L.A., Grosenick L., Finkelstein J.C., Kauvar I.V. et al. Natural neural projection dynamics underlying social behavior // Cell. 2014. V. 157: P. 1535–1551. https://doi.org/10.1016/j.cell.2014.05.017
  39. Izuma K., Saito D.N., Sadato N. Processing of social and monetary rewards in the human striatum // Neuron. 2008. V. 58. P. 284–294. https://doi.org/10.1016/j.neuron.2008.03.020
  40. Kahn I., Yeshurun Y., Rotshtein P., Fried I. et al. The role of the amygdala in signaling prospective outcome of choice // Neuron. 2002. V. 33. P. 983–994. https://doi.org/10.1016/s0896-6273(02)00626-8
  41. Kahneman D., Tversky A. Prospect theory: an analysis of decision under risk // Econometrica. 1979. V. 47. P. 263–291.
  42. Keysers C., Knapska E., Moita M.A., Gazzola V. Emotional contagion and prosocial behavior in rodents // Trends Cogn Sci. 2022. V. 26. № 8. P. 688–706. https://doi.org/10.1016/j.tics.2022.05.005
  43. Kim S.W., Kim M., Shin H.S. Affective empathy and prosocial behavior in rodents // Curr. Opin. Neurobiol. 2021. V. 68. P. 181–189. https://doi.org/10.1016/j.conb.2021.05.002
  44. Knutson B., Fong G.W., Bennett S.M., Adams C.M., Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid eventrelated fMRI // NeuroImage. 2003. V. 18. P. 263–272. https://doi.org/10.1016/s1053-8119(02)00057-5
  45. Krawczyk M.C., Fernández R.S., Pedreira M.E., Boccia M.M. Toward a better understanding on the role of prediction error on memory processes: from bench to clinic // Neurobiol. Learn. Mem. 2017. V. 142. P. 13–20. https://doi.org/10.1016/j.nlm.2016.12.011
  46. Lak A., Stauffer W.R., Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 2343–2348. https://doi.org/10.1073/pnas.1321596111
  47. Leblanc H., Ramirez S. Linking social cognition to learning and memory // J. Neurosci. 2020. V. 40. № 46. P. 8782–8798. https://doi.org/10.1523/JNEUROSCI.1280-20.2020
  48. Lerner J.S., Li Y., Valdesolo P., Kassam K.S. Emotion and decision making // Annu. Rev. Psychol. 2015. V. 66. P. 799–823. https://doi.org/10.1146/annurev-psych-010213-115043
  49. Loewenstein G., Rick S., Cohen J.D. Neuroeconomics // Annu. Rev. Psychol. 2008. V. 59. P. 647–672. https://doi.org/10.1146/annurev.psych.59.103006.093710
  50. Maes E.J.P., Sharpe M.J., Usypchuk A.A., Lozzi M. et al. Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors // Nat. Neurosci. 2020. V. 23. P. 176–178. https://doi.org/10.1038/s41593-019-0574-1
  51. Mazur J. An adjusting procedure for studying delayed reinforcement. Quantitative analyses of behaviour: the effect of delay and intervening events on reinforcement value. Eds M.L. Commons, J.A. Nevin, H.C. Rachlin. Hillsdale. NewJersey, Erlbaum. 1987. V. 5. P. 55–73.
  52. McClure S.M., Ericson K.M., Laibson D.I., Loewenstein G., Cohen J.D. Time discounting for primary rewards // J. Neurosci. 2007. V. 27. P. 5796–5804. https://doi.org/10.1523/JNEUROSCI.4246-06.2007
  53. McClure S.M., Laibson D.I., Loewenstein G., Cohen J.D. Separate neural systems value immediate and delayed monetary rewards // Science. 2004. V. 306. P. 503–507. https://doi.org/10.1126/science.1100907
  54. McClure S.M., Berns G.S., Montague P.R. Temporal prediction errors in a passive learning task activate human striatum // Neuron. 2003. V. 38. P. 339–346. https://doi.org/10.1016/s0896-6273(03)00154-5
  55. Ostrov J.M., Godleski S.A. Impulsivity-hyperactivity and subtypes of aggression in early childhood: an observational and short-term longitudinal study // Eur. Child Adolesc. Psychiatry. 2009. V. 18. № 8. P. 477–483. https://doi.org/10.1007/s00787-009-0002-2
  56. Perry J.L., Carroll M.E. The role of impulsive behavior in drug abuse // Psychopharmacology. 2008. V. 200. № 1. P. 1–26. https://doi.org/10.1007/s00213-008-1173-0
  57. Rescorla R.A., Wagner A.R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, in A. H. B. W. F. Prokasy (Ed.), Classical conditioning: II. Current research and theory. 1972. P. 64–99, New York, NY, Appleton-Century-Crofts.
  58. Richards J.B., Mitchell S.H., de Wit H., Seiden L.S. Determination of discount functions in rats with an adjusting-amount procedure // J. Exper. Anal. Behav. 1997. V. 67. P. 353–366.
  59. Robbins T.W. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry // Psychopharmacology (Berl). 2002. V. 163. № 3–4. P. 362–380. https://doi.org/10.1007/s00213-002-1154-7
  60. Salamone J.D., Correa M., Yang J.H., Rotolo R., Presby R. Dopamine, effort-based choice, and behavioral economics: basic and translational research // Front. Behav. Neurosci. 2018. V. 23. № 12. P. 52. https://doi.org/10.3389/fnbeh.2018.00052
  61. Sato N., Tan L., Tate K., Okada M. Rats demonstrate helping behavior toward a soaked conspecific // Animal Cognition. 2015. V. 18. № 5. P. 1039–1047. https://doi.org/10.1007/s10071-015-0872-2
  62. Schultz W. Reward prediction error // Curr. Biol. 2017. V. 27. P. 369–371. https://doi.org/10.1016/j.cub.2017.02.064
  63. Schultz W. Dopamine reward prediction error coding // Dialogues Clin. Neurosci. 2016. V. 18. P. 23–32. https://doi.org/10.31887/DCNS.2016.18.1/wschultz
  64. Schultz W. Multiple dopamine functions at different time courses // Annu. Rev. Neurosci. 2007. V. 30. P. 259–288. https://doi.org/10.1146/annurev.neuro.28.061604.135722
  65. Schultz W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey // J. Neurophysiol. 1986. V. 56. P. 1439–1462. https://doi.org/10.1152/jn.1986.56.5.1439
  66. Shiv B., Loewenstein G., Bechara A., Damasio H., Damasio A.R. Investment behavior and the negative side of emotion // Psychol. Sci. 2005. V. 16. P. 435–439. https://doi.org/10.1111/j.0956-7976.2005.01553.x
  67. Simonov P.V. The need-informational theory of emotions // Int. J. Psychophysiol. 1984. V. 1. № 3. P. 277–289.
  68. Solié C., Girard B., Righetti B., Tapparel M., Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error // Nat. Neurosci. 2022. V. 25. № 1. P. 86–97. https://doi.org/10.1038/s41593-021-00972-9
  69. Steinberg E.E., Keiflin R., Boivin J.R., Witten I.B. et al. A causal link between prediction errors, dopamine neurons and learning // Nat. Neurosci. 2013. V. 16. № 7. P. 966–973. https://doi.org/10.1038/nn.3413
  70. Thaler R.H. Toward a positive theory of consumer choice // J. Econ. Behav. Organ. 1980. V. 1. P. 39–60.
  71. Winstanley C.A., Eagle D.M., Robbins T.W. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies // Clin. Psychol. Rev. 2006. V. 26. P. 379–395. https://doi.org/10.1016/j.cpr.2006.01.001
  72. Wrighten S.A., Hall C.R. Support for altruistic behavior in rats // Open Journal of Social Sciences. 2016. V. 4. № 12. P. 93–102.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphical representation of individual-typological properties of the subject based on underestimation and overestimation of reinforcement by the brain in conditions of uncertainty of its achievement. The blue circle in each sector shows the differences in the intensity of each psychophysiological parameter. The farther from the center of coordinates the reference point is located, the more pronounced is the characteristic of this parameter; outside the circle, in the rectangles, psychopathologies arising from the extreme expression of each individual parameter are shown. The figure also marks mediators whose values ​​are either increased (brackets with a plus) or decreased (brackets with a minus) depending on the corresponding psychopathologies of the body. Large arrows indicate the zone of environmental overdetermination and overestimation of negative / positive reinforcement, small arrows - the zone of environmental uncertainty and underestimation of negative / positive reinforcement.

Download (180KB)

Copyright (c) 2024 Russian Academy of Sciences