Response of Cells in the Temporal Cortex of a Non-Narcotised Cat to Human Snoring Sounds


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The response of cells in the temporal cortex of a non-narcotized cat to human snoring sounds was studied using a unique installation created by Ivan Pigarev. Thanks to this installation, it was possible to study the activity of cat neurons in a natural environment, recording a large number of parameters characterizing brain activity (local cortical potential and electroencephalogram) and important parameters of general body state (heartbeat, breathing, eye movement). The spike activity of individual cells or small groups of cells localized in cortical areas associated with sound analysis was considered. A significant number of these cells responded to a low-frequency intensive human snore sound with by modulating their firing frequency synchronized with the temporal features of the snore. These data allow us to reconsider some established postulates regarding the role of the auditory cortex based on experiments conducted mainly on anesthetized animals.

Негізгі сөздер

Авторлар туралы

N. Bibikov

N.N. Andreev Acoustic Institute; A.A. Kharkevich Institute of Information Transmission Problems

Email: nbibikov1@yandex.ru
117036, Moscow, Shvernika St., 4, Russia; 127051, Moscow, B. Karetny lane., 19, Russia

I. Pigarev

A.A. Kharkevich Institute of Information Transmission Problems

127051, Moscow, B. Karetny lane., 19, Russia

Әдебиет тізімі

  1. Бибиков Н.Г., Грубник О.Н. Улучшение синхронизации импульсной активности слуховых нейронов лягушки с огибающей звука в процессе долговременной адаптации. Сенсорные системы. 1996. Т.10(1). C. 5–18.
  2. Бибиков Н.Г., Низамов С.В., Пигарев И.Н. Нейронные реакции коры мозга кошки на звуки, поступающие с фронтального направления (методические аспекты). Труды всероссийской акустической конференции. СПб. Политех-Пресс. 2020. С. 281–284.
  3. Бибиков Н.Г., Ковальзон В.М. Реакции нейронов ненаркотизированной кошки на человеческий храп. Тезисы Всероссийской научно-практической XIII конференции “Актуальные проблемы сомнологии”. 2022. С. 11. ISBN: 978-5-6045579-8-3.
  4. Мельников А.Ю., Мессерле А.А. Корреляция параметров акустического анализа храпа и степени тяжести синдрома обструктивного апноэ сна. Эффективная фармакотерапия. 2019. Т. 15(44). С. 62–66.
  5. Пигарев И.Н., Бибиков Н.Г., Лиманская А.В., Калмыков В.К. Возможный механизм деструктивного влияния звука храпа на висцеральные системы организма. Тезисы XII Всероссийской научно-практической конференции “Актуальные проблемы сомнологии”. 2020. С. 59-60.
  6. Arshavsky Y.I. Neurons versus networks: the interplay between individual neurons and neural networks in cognitive functions. The Neuroscientist. 2016. V. 23(4). P. 341–355. doi: 10.1177/1073858416670124
  7. Bar-Yosef O., Rotman Y., Nelken I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neuroscience. 2002. V. 22(19). P. 8619–8632. doi: 10.1523/JNEUROSCI.22-19-08619.2002.
  8. Bibikov N.G. Addition of noise enhanced neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear. Research. 2002. V. 173(1). Р. 21-28. doi: 10.1016/s0378-5955(02)00456-2
  9. Bibikov N.G. Functional studies of the primary auditory cortex in the cat. Neuroscience and Behavioral Physiol. 2021. V. 51 (8). P. 1169–1189. doi: 10.1007/s11055-021-01177-0
  10. Bibikov N. G., Pigarev I. N. The main statistical properties of the background activity of cortical neurons in cats during slow-wave sleep. Neuroscience and Behavioral Physiol. 2015. V. 45(2). P. 213-222. doi: 10.1007/s11055-015-0060-5
  11. Bibikov N.G., Makushevich I.V. Dynamics of background and evoked activity of neurons in the auditory cortex of the unanaesthetized cat. In: Kryzhanovsky B., Dunin-Barkowski W., Redko V., Tiumentsev Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research VI. Neuroinformatics 2022. Studies in Computational Intelligence, Springer. 2023. V. 1064. P. 183-190. doi: 10.1007/978-3-031-19032-2_18
  12. Filipchuk A., Schwenkgrub J., Destexhe A., Bathellier B. Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex. Nature Neuroscience. 2022. V. 25. P. 1327–1338. doi: 10.1038/s41593-022-01168-5.
  13. Gabriel M., Julien C., Salin P.A., Comte J.C. Differential recordings of local field potential: A genuine tool to quantify functional connectivity. PLoS ONE. 2018. V.13(12). e0209001. doi: 10.1371/journal.pone.020900
  14. Gosselin E., Bagur S., Bathellier B. Massive perturbation of sound representations by anesthesia in the auditory brainstem. Science advances. 2024. V. 10 (42). eado2291. doi: 10.1126/sciadv.ado2291
  15. Imig T.J., Bibikov N.G., Pourrier P., Samson F.K. Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus. J. Neurophysiol. 2000. V. 83(2). P. 907–925. doi: 10.1152/jn.2000.83.2.907
  16. Insanally M.N., Carcea I., Field R.E., Rodger C.C., DePasquale B., Rajan K., DeWeese M.R., Albanna B.F., Froemke R.F. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife. 2019. V. 8. e42409. doi: 10.7554/eLife.42409.
  17. Loomba S., Straehle J., Gangadharan V., Heike N., Khalifa A., Motta A., Ju N., Sievers M., Gempt J., Meyer H.S., Helmstaedter M. Connectomic comparison of mouse and human cortex. Science. 2022. V. 377. 6602. eabo0924. DOI: 10.1126/ science.abo0924.
  18. López Espejo M., David S.V. A sparse code for natural sound context in auditory cortex. Curr. Res. Neurobiol. 2024. V. 6. 100118. doi: 10.1016/j.crneur.2023.100118.
  19. McGinley M.J., Vinck M., Reimer J., Batista-Brito R., Zagha E., Cadwell C.R., Tolias A.S., Cardin J.A., McCormick D.A. Waking state: rapid variations modulate neural and behavioral responses. Neuron. 2015. V. 87(6). P. 1143–1161. doi: 10.1016/j.neuron.2015.09.012.
  20. Noda T., Aschauer D.F., Chambers A.R., et al. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci. 2024. V. 18. 1366200. doi: 10.3389/fncel.2024.1366200.
  21. Pigarev I.N., Saalmann Y.B., Vidyasagar T.R. A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys. J. Neurosci. Methods 2009. V. 181. P. 151–158. doi: 10.1016/j.jneumeth.2009.04.024
  22. Ponce-Alvarez A. Network mechanisms underlying the regional diversity of variance and time scales of the brain’s spontaneous activity fluctuations. J. Neuroscience. 2025. V.45(10). e1699242024. doi: 10.1523/JNEUROSCI.1699-24.2024.
  23. Qin L., Wang J.Y., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008. V. 99. P. 2305–2319. doi: 10.1152/jn.01125.2007.
  24. Shapson-Coe A., Januszewski M., Berger D. R., Pope, A., Wu Y., Blakely T., ... Lichtman J.W. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science. 2024. V. 384(6696). p.eadk4858. doi: 10.1126/science.adk4858
  25. Suga N. Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats. Hearing Research. 2018. V. 361. doi: 10.1016/j.heares.2018.01.012
  26. Weinberger N. M., McKenna T. M. Sensitivity of single neurons in auditory cortex to contour: toward a neurophysiology of music perception. Music Perception: An Interdisciplinary Journal. 1988. V. 5 (4). P. 355–389. doi: 10.2307/40285407

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025