Comparison of spontaneous and evoked activity of CA1 pyramidal cells and dentate gyrus granule cells of the hippocampus at an increased extracellular potassium concentration

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We studied the effect of changing extracellular potassium concentration ([K+]o) on spontaneous and evoked burst activity of glutamatergic neurons in the mouse hippocampus using whole-cell patch clamp. We show that increasing [K+]o from 3 to 8.5 mM (potassium load) induced spontaneous tonic (1) and pacemaker burst (2) activity of CA1 pyramidal cells (20% and 10% of the total number of cells, respectively). In contrast to CA1, potassium loading did not lead to the appearance of pacemaker granule cells in the dentate gyrus (DG). Similarly, potassium load increased the evoked burst activity of CA1 pyramidal cells and, paradoxically, suppressed the burst activity of DG granule cells over the entire range of current steps from 10 to 200 pA. Potassium load shifted the current-voltage characteristics to the right and substantially increased inward currents in CA1 and DG cells. Inward and outward currents of DG neurons were 4–4.5 times as high as those of CA1 cells. The possible involvement of potassium-activated potassium-conducting channels is discussed in the bimodal effect of potassium load on the excitability of CA1 and DG glutamatergic neurons. Our results suggest that CA1 pyramidal cells may be more sensitive to potassium load than DG granule cells, which may play a role in hyperexcitation of neural networks during epileptogenesis.

全文:

受限制的访问

作者简介

A. Galashin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: dynnik@rambler.ru
俄罗斯联邦, Pushchino, 142290

M. Konakov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: dynnik@rambler.ru
俄罗斯联邦, Pushchino, 142290

V. Dynnik

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dynnik@rambler.ru
俄罗斯联邦, Pushchino, 142290

参考

  1. Shao J., Liu Y., Gao D., Tu J., Yang F. 2021. Neural Burst Firing and Its Roles in Mental and Neurological Disorders. Front. Cell. Neurosci., 15, 741292. doi: 10.3389/fncel.2021.741292
  2. Targa Dias Anastacio H., Matosin N., Ooi L. 2022. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl. Psychiatry, 12, 257. doi: 10.1038/s41398-022-02024-7
  3. Telias M., Segal M. 2022. Editorial: Pathological hyperactivity and hyperexcitability in the central nervous system. Front. Mol. Neurosci., 15, 955542. doi: 10.3389/fnmol.2022.955542
  4. Raimondo J.V., Burman R.J., Katz A.A., Akerman C.J. 2015. Ion dynamics during seizures. Front. Cell. Neurosci. 9, 419. doi: 10.3389/fncel.2015.00419
  5. Antonio L.L., Anderson M.L., Angamo E.A., Gabriel S., Klaft Z.-J., Liotta A., Salar S., Sandow N., Heinemann U. 2016. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods. 260, 33–44. doi: 10.1016/j.jneumeth.2015.08.014
  6. Rasmussen R., O’Donnell J., Ding F., Nedergaard M. 2020. Interstitial ions: A key regulator of state-dependent neural activity? Prog. Neurobiol. 193, 101802. doi: 10.1016/j.pneurobio.2020.101802
  7. de Curtis M., Uva L., Gnatkovsky V., Librizzi L. 2018. Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res. 143, 50–59. doi: 10.1016/j.eplepsyres.2018.04.005
  8. Fertziger A.P., Ranck J.B. 1970. Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26, 571–585. doi: 10.1016/0014-4886(70)90150-0
  9. Zuckermann E.C., Glaser G.H. 1968. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20, 87–110. doi: 10.1016/0014-4886(68)90126-x
  10. Traynelis S.F., Dingledine R. 1988. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. doi: 10.1152/jn.1988.59.1.259
  11. Somjen G.G., Müller M. 2000. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885, 102–110. doi: 10.1016/s0006-8993(00)02948-6
  12. Wang L., Dufour S., Valiante T.A., Carlen P.L. 2016. Extracellular Potassium and Seizures: Excitation, Inhibition and the Role of Ih. Int. J. Neural. Syst. 26, 1650044. doi: 10.1142/S0129065716500441
  13. Liotta A., Caliskan G., ul Haq R., Hollnagel J.O., Rösler A., Heinemann U., Behrens C.J. 2011. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J. Neurophysiol. 105, 172–187. doi: 10.1152/jn.00186.2010
  14. Hablitz J.J., Johnston D. 1981. Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell. Mol. Neurobiol. 1, 325–334. doi: 10.1007/BF00716267
  15. Pan E., Stringer J.L. 1997. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol. 77, 2293–2299. doi: 10.1152/jn.1997.77.5.2293
  16. Jensen M.S., Yaari Y. 1997. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77, 1224–1233. doi: 10.1152/jn.1997.77.3.1224
  17. Lee-Liu D., Gonzalez-Billault C. 2021. Neuron-intrinsic origin of hyperexcitability during early pathogenesis of Alzheimer’s disease: An Editorial Highlight for ‘Hippocampal hyperactivity in a rat model of Alzheimer’s disease’ on https://doi.org/10.1111/jnc.15323. J. Neurochem., 158, 586–588. doi: 10.1111/jnc.15248
  18. Sanabria E.R., Su H., Yaari Y. 2001. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol., 532, 205–216. doi: 10.1111/j.1469-7793.2001.0205g.x
  19. Hofer K.T., Kandrács Á., Tóth K., Hajnal B., Bokodi V., Tóth E.Z., Erőss L., Entz L., Bagó A.G., Fabó D., Ulbert I., Wittner L. 2022. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci. Rep., 12, 6280. doi: 10.1038/s41598-022-10319-4
  20. David Y., Cacheaux L.P., Ivens S., Lapilover E., Heinemann U., Kaufer D., Friedman A. 2009. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599. doi: 10.1523/JNEUROSCI.2323-09.2009
  21. de Curtis M., Librizzi L., Uva L. 2006. In Vitro Isolated Guinea Pig Brain. In: Models of Seizures and Epilepsy. Academic Press Inc., p. 103–109.
  22. Fröhlich F., Bazhenov M., Iragui-Madoz V., Sejnowski T.J. 2008. Potassium dynamics in the epileptic cortex: New insights on an old topic. Neuroscientist. 14, 422–433. doi: 10.1177/1073858408317955
  23. González O.C., Shiri Z., Krishnan G.P., Myers T.L., Williams S., Avoli M., Bazhenov M. 2018. Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization. Neurobiol. Dis. 109, 137–147. doi: 10.1016/j.nbd.2017.10.011
  24. Gentiletti D., de Curtis M., Gnatkovsky V., Suffczynski P. 2022. Focal seizures are organized by feedback between neural activity and ion concentration changes. Elife. 11, e68541. doi: 10.7554/eLife.68541
  25. Nenov M.N., Tempia F., Denner L., Dineley K.T., Laezza F. 2015. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. J. Neurophysiol. 113 (6), 1712–26. doi: 10.1152/jn.00419.2014
  26. Tamagnini F., Scullion S., Brown J.T., Randall A.D. 2015. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus. 25 (7), 786–97. doi: 10.1002/hipo.22403
  27. Harden S.W. pyABF: A pure-Python ABF file reader. URL: https://pypi.org/project/pyabf/ [date accessed: 05.05.2024]
  28. Bikson M., Hahn P.J., Fox J.E., Jefferys J. 2003. Depolarization block of neurons during maintenance of electrographic seizures. J. Neurophysiol. 90 (4), 2402–8. doi: 10.1152/jn.00467.2003
  29. Averin A.S., Konakov M.V., Pimenov O.Y., Galimova M.H., Berezhnov A.V., Nenov M.N., Dynnik V.V. 2022. Regulation of papillary muscle contractility by NAD and ammonia interplay: Contribution of ion channels and exchangers. Membranes (Basel). 12 (12), 1239. doi: 10.3390/membranes12121239
  30. Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., Kurachi Y. 1996. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol. 493 (Pt 1), 143–156. doi: 10.1113/jphysiol.1996.sp021370
  31. Ishihara K., Ehara T. 1998. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol. 510 (Pt 3), 755–771. doi: 10.1111/j.1469-7793.1998.755bj.x
  32. Dhamoon A.S., Pandit S.V., Sarmast F., Parisian K.R., Guha P., Li Y., Bagwe S., Taffet S.M., Anumonwo J.M.B. 2004. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ. Res. 94, 1332–1339. doi: 10.1161/01.RES.0000128408.66946.67
  33. McCormick D.A., Pape H.C. 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431, 291–318. doi: 10.1113/jphysiol.1990.sp018331
  34. Azene E.M., Xue T., Li R.A. 2003. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J. Physiol. 547, 349–356. doi: 10.1113/jphysiol.2003.039768
  35. Nuss H.B., Marbán E., Johns D.C. 1999. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest. 103, 889–896. doi: 10.1172/JCI5073
  36. Arima-Yoshida F., Watabe A.M., Manabe T. 2011. The mechanisms of the strong inhibitory modulation of long-term potentiation in the rat dentate gyrus. Eur. J. Neurosci. 33 (9), 1637–1646. doi: 10.1111/j.1460-9568.2011.07657.x
  37. Bertrand S., Nouel D., Morin F., Nagy F., Lacaille J.-C. 2003. Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse. 50 (2), 95–109. doi: 10.1002/syn.10247
  38. Yarishkin O., Lee D.Y., Kim E., Cho C.-H., Choi J.H., Lee C.J., Hwang E.M., Park J.-Y. 2014. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol. Brain. 7, 80. doi: 10.1186/s13041-014-0080-z
  39. Bauer C.K., Schwarz J.R. 2018. Ether-à-Go-Go K+ channels: Effective modulators of neuronal excitability. J. Physiol. 596 (5), 769–783. doi: 10.1113/JP275477
  40. Mishra P., Narayanan R. 2021. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol. Rep. 9, e14963. doi: 10.14814/phy2.14963
  41. Bianchi D., Marasco A., Limongiello A., Marchetti C., Marie H., Tirozzi B., Migliore M. 2012. On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J. Comput. Neurosci. 33 (2), 207–25. doi: 10.1007/s10827-012-0383-y
  42. Goaillard J.-M., Marder E. 2021. Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annu. Rev. Neurosci. 44, 335–357. doi: 10.1146/annurev-neuro-092920-121538

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Electrophysiological characteristics of pyramidal neurons of field CA1 at 3 mM and 8.5 mM KCl in extracellular solution. a, b, c – Effect of increased concentration of potassium ions on the resting potential (a), membrane resistance (b) and threshold current (c). d, d – Spontaneous (in the absence of stimulation) bursting (d) and tonic (d) activity at 8.5 mM KCl. e – Current-voltage characteristics of pyramidal neurons of field CA1 at 3 mM and 8.5 mM KCl. Stimulation from –100 to +20 mV for 500 ms from the initial potential of –70 mV. g – Response of pyramidal cells to stimulation with a current of +200 pA for 500 ms relative to the resting potential at 3 mM and 8.5 mM KCl. h – Curves of the dependence of the number of action potentials on the intensity of current stimulation (from 0 to +200 pA for 500 ms relative to the resting potential). * p < 0.05, ns – insignificant; a, b, c – paired t-test; f, h – two-way ANOVA with repeated measures (p < 0.0001) and post hoc Šidák test (p < 0.05). Data are presented as mean ± SEM.

下载 (220KB)
3. Fig. 2. Electrophysiological characteristics of granule neurons of the dentate gyrus at 3 mM and 8.5 mM KCl in the extracellular solution. a, b, c – Effect of increased concentration of potassium ions on the resting potential (a), membrane resistance (b) and threshold current (c). d – Response of granule cells to stimulation with a current of +200 pA for 500 ms relative to the resting potential at 3 mM and 8.5 mM KCl. g – Curves of the dependence of the number of action potentials on the strength of current stimulation (from 0 to +200 pA for 500 ms relative to the resting potential). e – Absence of spontaneous (in the absence of stimulation) activity in DG cells at 3 mM and 8.5 mM KCl. g – Current-voltage characteristics of granule neurons of the dentate gyrus at 3 mM and 8.5 mM KCl. Stimulation from –100 to +20 mV for 500 ms from the initial potential of –70 mV. * p < 0.05, ns – not significant; a, b, c – paired t-test; d, g – two-way ANOVA with repeated measures (p < 0.0001) and post hoc Šidák test (p < 0.05). Data are presented as mean ± SEM.

下载 (223KB)

版权所有 © The Russian Academy of Sciences, 2025