Physicochemical properties of disperse-filled ethylene-octene copolymer
- 作者: Myasoedova V.V.1, Golobokov D.A.2
 - 
							隶属关系: 
							
- Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences
 - University of Science and Technology “MISIS”
 
 - 期: 卷 43, 编号 5 (2024)
 - 页面: 85-92
 - 栏目: Chemical physics of polymeric materials
 - URL: https://transsyst.ru/0207-401X/article/view/674951
 - DOI: https://doi.org/10.31857/S0207401X24050109
 - ID: 674951
 
如何引用文章
详细
The article is aimed at developing innovations in the field of hybrid polymer nanomaterials and investigating their structural, thermodynamic, and physico-mechanical properties. Filling the ethylene-octene copolymer with Ni nanoparticles as well as basalt scales increases the elasticity of the composite by a 25% and also causes an increase in strength by a 15%. Obtained results open possibility to evaluate influence of chemical nature, sizes and content of different kinds of fillers for improvement thermostability and elasticity of the new hybrid polymer nanomaterials.
全文:
作者简介
V. Myasoedova
Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: veravm777@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
D. Golobokov
University of Science and Technology “MISIS”
														Email: veravm777@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
参考
- Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J. et al. // Chemosensors. 2023. V. 11. № 6. P. 320. https://doi.org/10.3390/ chemosensors11060320
 - Kozhushner M.A., Trakhtenberg L.I., Bodneva V.L. et al. // J. Phys. Chem. C. 2014. V. 118. № 21. P. 11440. https://doi.org/10.1021/jp501989k
 - Trakhtenberg L.I., Gerasimov G.N., Grigor’ev E.I. // Russ. J. Phys. Chem. A. 1999. V. 73. P. 209.
 - Zhukov A.M., Solodilov V.I., Tretyakov I.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 926. https://doi.org/10.1134/S199079312205013X
 - Guymon G.G., Malakooti M.H. // J. Polym. Sci. 2022. V. 60. № 8. P. 1300. https://doi.org/10.1002/pol.20210867
 - Nesmelov A.A., Zavyalov S.A., Malakhov S.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 826.
 - Trzepieci’nski T., Najm S.M., Sbayti M. et al. // J. Compos. Sci. 2021. V. 5. № 8. P. 217. https://doi.org/10.3390/jcs5080217
 - Tran V.V., Nu T.T.V., Jung H.-R. et al. // Polymers. 2021. V. 13. № 18. P. 3031. https://doi.org/10.3390/polym13183031
 - Aloev V.Z., Zhirikova Z.M., Tarchokova M.A. // ChemChemTech. 2020. V. 63. P. 81. https://doi.org/10.6060/ivkkt.20206304.6158
 - Li Z., Wu W., Chen H. et al. // Roy. Soc. Chem. Adv. 2013. V. 3. P. 6417. https://doi.org/10.1039/c3ra22482a
 - Lebedeva E.A., Astafieva S.A., Trukhinov D.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 191. https://doi.org/10.1134/S1990793123010244
 - Myasoedova V., Zakharova E., Vasiljev I. // Annals DAAAM Proc. Intern. DAAAM Sympos. 2021. V. 32. P. 177. https://doi.org/10.2507/32nd.daaam.proceedings.027
 
补充文件
				
			
						
						
						
						
					












