Silicon surface modification with low-energy broad ion beam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Broad ion beam etching by Ar⁺ with low energy up to 1000 eV has been utilized to modify physicochemical properties of the monocrystalline Silicon (100) surface. The silicon surface modification results in etching delay time during its vacuum-plasma etching in a SF₆/O₂/Ar mixture. The etching delay time of the modified Silicon has been found to be significantly affected by conditions of preliminary silicon treatment with the ion beam such as the ion energy and the ion incidence angle. The enhancement in the etching delay time has been detected while lower ion energy and higher ion incidence angle are applied. The combination of the ion beam etching and the vacuum plasma etching could be concerned as the suitable way to form silicon structures.

Full Text

Restricted Access

About the authors

L. M. Kolchina

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Author for correspondence.
Email: Ludmila.Kolchina@yandex.ru
Russian Federation, Moscow

References

  1. Cao T., Hu T., Zhao Y. // Micromachines. 2020. V. 11. P. 694. https://doi.org/10.3390/mi11070694
  2. Hossain N., Al Mahmud Md Z., Hossain A. et al. // Results Eng. 2024. V. 22. P. 102115. https://doi.org/10.1016/j.rineng.2024.102115
  3. Tozihi M., Zarringari S.S. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1034. https://doi.org/10.1134/S1990793123050123
  4. Lukin L.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1300. https://doi.org/10.1134/S1990793123060180
  5. Martirosyan V., Despiau-Pujo E., Dubois J. et al. // J. Vac. Sci. Technol. A. 2018. V. 36. P. 041301. https://doi.org/10.1116/1.5025152
  6. Baldin E.D., Vorobieva G.A., Kolbanev I.V. et al. // Russ. J. Phys. Chem. B. 2024.V. 18. № 1. P. 203. https://doi.org/10.1134/S1990793124010056
  7. Kochetov N.A., Kovalev I.D. // Russ. J. Phys. Chem. B. 2024. V. 18. № 2. P. 485. https://doi.org/10.1134/S1990793124020106
  8. Shandyba N., Balakirev S., Sharov V. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 224. https://doi.org/10.3390/ijms24010224
  9. Qian H.X., Zhou W., Miao J. et al. // J. Micromech. Microeng. 2008. V. 18. P. 035003. https://doi.org/10.1088/0960-1317/18/3/035003
  10. Henry M.D., Shearn M.J., Chhim B., Scherer A. // Nanotechnology. 2010. V. 21. P. 245303. https://doi.org/10.1088/0957-4484/21/24/245303
  11. Fischer A.C., Belova L.M., Rikers Y.G.M. et al. // Adv. Funct. Mater. 2012. V. 22. P. 4004. https://doi.org/10.1002/adfm.201200845
  12. Brugger J., Beljakovic G., Despont M. et al. // Microeletron. Eng. 1997. V. 35. P. 401. https://doi.org/10.1016/s0167-9317(96)00210-9
  13. Sievila P., Chekurov N., Tittonen I. // Nanotechnology. 2010. V. 21. P. 145301. https://doi.org/10.1088/0957-4484/21/14/145301
  14. Robins A.C., Cerchiara R.R., Fischione P.E. et al. // J. Phys. Conf. Ser. 2013. V. 471. P. 012046. https://doi.org/10.1088/1742-6596/471/1/012046
  15. Harper J.M.E., Cuomo J.J., Kaufman H.R. // Ann. Rev. Mater. Sci. 1983.V. 13. P. 413. https://doi.org/10.1146/annurev.ms.13.080183.002213
  16. Lee R.E. VLSI electronics: microstructure science. V. 8. Academic Press, Inc., 1984. https://doi.org/10.1016/b978-0-12-234108-3.50016-9
  17. Sawyer W.D., Weber J., Nabert G. et al. // J. Appl. Phys. 1990. V. 68. P. 6179. https://doi.org/10.1063/1.346908
  18. Chason E., Picraux S.T., Poate J.M. et al. // J. Appl. Phys. 1997. V. 81. P. 6513. https://doi.org/10.1063/1.365193
  19. Howitt D.G. // J. Electron Microsc. Tech. 1984. V. 1. P. 405. https://doi.org/10.1002/jemt.1060010409
  20. Helmer B.A., Graves D.B. // J. Vac. Sci. Technol. A. 1998. V. 16. P. 3502. https://doi.org/10.1116/1.580993
  21. Valov A.F., Avetisov V.A. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 474. https://doi.org/10.1134/S1990793122030101
  22. Buttari D., Chini A., Palacios T. et al. // Appl. Phys. Lett. 2003. V. 83. P. 4779. https://doi.org/10.1063/1.1632035
  23. Mikhailenko M.S., Pestov A.E., Chkhalo N.I. et al. // Appl. Optics. 2022. V. 61. № 10. P. 2825. https://doi.org/10.1364/AO.455096
  24. Takenaka H., Oishi Y., Ueda D. // J. Vac. Sci. Technol. B. 1994. V. 12. P. 3107. https://doi.org/10.1116/1.587486
  25. Wu H., Cargo J. // Proc. 28th Int. Symp. Testing and Failure Analysis. Materials Park, Ohio, USA: ASM Int. 2002. P. 675. https://doi.org/10.31399/asm.cp.istfa2002p0675
  26. Ross R. J. Microelectronics Failure Analysis, Desk Reference. Sixth Edition. Ohio, USA. ASM Int., 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of the energy of Ar⁺ ions during preliminary ion-beam treatment of silicon targets at an ion incidence angle of 88° (a), 75° (b), 0° (c) relative to the normal to the target surface on the delay time of subsequent etching of silicon in SF₆/O₂/Ar plasma.

Download (51KB)
3. Fig. 2. Surface profile of a silicon target obtained using optical profilometry after using a combination of the ITL and VPT methods: a – Ar⁺ beam with an energy of 400 eV at an incidence angle of 88° followed by VPT, b – Ar⁺ beam with an energy of 600 eV at an incidence angle of 75° followed by VPT.

Download (106KB)

Copyright (c) 2025 Russian Academy of Sciences