Phycotoxins of Dinoflagellates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Dinoflagellates are a large group of protists with diverse morphogenetic forms and nutrition modes (phototrophy, mixotrophy, and heterotrophy). Outbreaks of dinoflagellate growth, known as harmful algal blooms (HABs), can cause deaths of fish, birds, mammals, and other animals, and pose a significant danger to human health due to the consumption of seafood contaminated with phycotoxins. Therefore, identifying the factors that influence the synthesis of phycotoxins is important for predicting possible HAB events. Increased synthesis of phycotoxins by dinoflagellates under laboratory conditions is necessary for their use in biotechnological applications. This review summarizes the literature data on the main physicochemical and biotic factors influencing the synthesis of toxins by marine photosynthetic dinoflagellates, particularly saxitoxin and its derivatives. The primary focus is on the abiotic factors such as concentrations of nitrogen, phosphorus, micronutrients, temperature, illumination, salinity, pH, and carbon dioxide. Several biotic factors are also considered. A significant effect of copepodamides, which are low-molecular-weight compounds synthesized by copepods, on the phycotoxin synthesis is noted. The genetic basis for phycotoxin synthesis is discussed using saxitoxin as an example.

全文:

受限制的访问

作者简介

T. Laurinavichene

Institute of Fundamental Problems of Biology of the Russian Academy of Sciences

Email: ttt-00@mail.ru
ORCID iD: 0000-0002-2600-0557
俄罗斯联邦, Pushchino

P. Starygina

Institute of Fundamental Problems of Biology of the Russian Academy of Sciences

Email: ttt-00@mail.ru
ORCID iD: 0000-0002-8384-5329
俄罗斯联邦, Pushchino

T. Orlova

Zhirmunsky National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences

Email: ttt-00@mail.ru
ORCID iD: 0000-0002-5246-6967
俄罗斯联邦, Vladivostok

A. Tsygankov

Institute of Fundamental Problems of Biology of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ttt-00@mail.ru
ORCID iD: 0000-0003-2376-5658
俄罗斯联邦, Pushchino

参考

  1. Вершинин А.О., Орлова Т.Ю. Токсичные и вредные водоросли в прибрежных водах России // Океанология. 2008. Т. 48. № 4. С. 568–582.
  2. Орлова Т.Ю. Красные приливы и токсические микроводоросли в Дальневосточных морях России // Вестн. ДВО РАН. 2005. № 1. C. 27–31.
  3. Орлова Т.Ю., Морозова Т.В. Цисты динофлагеллят рода Alexandrium HALIM, 1960 (Dinophyceae: Gonyaulacales) из поверхностных осадков северо-западной части Тихого океана // Биол. моря. 2019. Т. 45. № 6. С. 363–373.
  4. Стоник В.А., Стоник И.В. Морские токсины: химические и биологические аспекты изучения // Успехи химии. 2010. Т. 79. № 5. С. 442–465.
  5. Abassi S., Kim H.S., Bui Q.T.N., Ki J.S. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV) // Harmful Algae. 2023. V. 127. Art. ID102473. https://doi.org/10.1016/j.hal.2023.102473
  6. Accoroni S., Ceci M., Tartaglione L. et al. Role of temperature and nutrients on the growth and toxin production of Prorocentrum hoffmannianum (Dinophyceae) from the Florida Keys // Harmful Algae. 2018. V. 80. P. 140–148.
  7. Aguilera-Belmonte A., Inostroza I., Carrillo K.S. et al. The combined effect of salinity and temperature on the growth and toxin content of four Chilean strains of Alexandrium catenella (Whedon and Kofoid) Balech 1985 (Dinophyceae) isolated from an outbreak occurring in southern Chile in 2009 // Harmful Algae. 2013. V. 23. P. 55–59.
  8. Akbar M.A., Mohd Yusof N.Y., Tahir N.I. et al. Biosynthesis of saxitoxin in marine dinoflagellates: an omics perspective // Mar. Drugs. 2020. V. 18. № 2. Art. ID103.
  9. Anderson D.M., Cembella A.D., Hallegraeff G.M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management // Ann. Rev. Mar. Sci. 2012. V. 4. P. 143–176.
  10. Anderson D.M., Kulis D.M., Sullivan J.J., Hall S. Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense // Toxicon. 1990. V. 28. P. 885–893.
  11. Arnoldt S., Pourdanandeh M., Spikkeland I. et al. Mass spectroscopy reveals compositional differences in copepodamides from limnic and marine copepods // Sci. Rep. 2024. V. 14. Art. ID3147. https://doi.org/10.1038/s41598-024-53247-1
  12. Blossom H., Markussen B., Daugbjerg N. et al. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium // Front. Microbiol. 2019. V. 10. Art. ID1065.
  13. Boyer G., Sullivan J., Andersen R. et al. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis // Mar. Biol. 1987. V. 96. P. 123–128.
  14. Brandenburg K., Siebers L., Keuskamp J. et al. Effects of nutrient limitation on the synthesis of N-rich phytoplankton toxins: a meta-analysis // Toxins (Basel). 2020. V. 12. № 4. Art. ID221.
  15. Bui Q.T.N., Kim H., Park H., Ki J.-S. Salinity affects saxitoxins (STXs) toxicity in the dinoflagellate Alexandrium pacificum, with low transcription of SXT-biosynthesis genes sxtA4 and sxtG // Toxins (Basel). 2021. V. 13. № 10. Art. ID733.
  16. Bui Q.T.N., Kim H.-S, Ki J.-S. Low salinity causes oxidative stress and modulates specific antioxidant gene expression in the toxic dinoflagellate Alexandrium pacificum // J. Appl. Phycol. 2022. V. 34. P. 2437–2447.
  17. Bui Q.T.N., Ki J.-S. Molecular characterization and expression analysis of saxitoxin biosynthesis gene sxtU from toxigenic dinoflagellate Alexandrium pacificum // J. Appl. Phycol. 2023. V. 35. № 2. P. 687–700.
  18. Bui Q.T.N., Pradhan B., Kim H.S., Ki J.S. Environmental factors modulate saxitoxins (STXs) production in toxic dinoflagellate Alexandrium: an updated review of STXs and synthesis gene aspects // Toxins (Basel). 2024. V. 16. № 5. Art. ID210. https://doi.org/10.3390/toxins16050210
  19. Camacho-Muñoz D., Praptiwi R.A., Lawton L.A., Edwards C. High value phycotoxins from the dinoflagellate Prorocentrum // Front. Mar. Sci. 2021. V. 8. Art. ID638739.
  20. Chen T., Chen X., Sun H. et al. Unveiling the responses of Alexandrium pacificum to phosphorus utilization by physiological and transcriptomic analysis // Sci. Total Environ. 2024. V. 911. Art. ID168759. https://doi.org/10.1016/j.scitotenv.2023.168759
  21. Cho Y., Tsuchiya S., Yoshioka R. et al. Column switching combined with hydrophilic interaction chromatography–tandem mass spectrometry for the analysis of saxitoxin analogues, and their biosynthetic intermediates in dinoflagellates // J. Chromatogr. 2016. V. 1474. P. 109–120.
  22. Christou E.D., Varkitzi I., Maneiro I. et al. The influence of the toxic dinoflagellate Alexandrium minutum, grown under different N: P ratios, on the marine copepod Acartia tonsa // Toxins. 2023. V. 15. Art. ID287. https://doi.org/10.3390/toxins15040287
  23. Conrad O., Pinto D., Redon D. et al. Origins and functional impact of copy number variation in the human genome // Nature. 2010. V. 464. P. 704–712.
  24. Davidson K., Gowen R.J., Harrison P.J. et al. Anthropogenic nutrients and harmful algae in coastal waters // J. Environ. Manage. 2014. V. 146. P. 206–216.
  25. Gallardo-Rodríguez J.J., Sánchez-Mirón A., García-Camacho F. et al. Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production // Process Biochem. 2010. V. 45. P. 660–666.
  26. Gu S., Xiao S.-W., Zheng J.-W. et al. ABC transporters in Prorocentrum lima and their expression under different environmental conditions including okadaic acid production // Mar. Drugs. 2019. V. 17. № 5. Art. ID259.
  27. Hackett J.D., Wisecaver J.H., Brosnahan M.L. et al. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates // Mol. Biol. Evol. 2012. V. 30. P. 70–78.
  28. Hadjadji I., Laabir M., Frihi H. et al. Unsuspected intraspecific variability in the toxin production, growth and morphology of the dinoflagellate Alexandrium pacificum R.W. Litaker (Group IV) blooming in a South Western Mediterranean marine ecosystem, Annaba Bay (Algeria) // Toxicon. 2020. V. 180. P. 79–88.
  29. Hallegraeff G.M., Anderson D.M., Davidson K. et al. Fish-killing marine algal blooms: Causative organisms, ichthyotoxic mechanisms, impacts and mitigation. GlobalHAB. Paris: UNESCO-IOC/SCOR, 2023. 96 p. (IOC Manuals and Guides; No. 93). http://dx.doi.org/10.25607/OBP-1964
  30. Han M., Lee H., Anderson D.M., Kim B. Paralytic shellfish toxin production by the dinoflagellate Alexandrium pacificum (Chinhae Bay, Korea) in axenic, nutrient-limited chemostat cultures and nutrient-enriched batch cultures // Mar. Pollut. Bull. 2016. V. 104. P. 34–43.
  31. He H., Chen F., Li H. et al. Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of Alexandrium tamarense // Harmful Algae. 2010. V. 9. P. 98–104.
  32. Hii K.S., Lim P.T., Kon N.F. et al. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: implications for the saxitoxin genes and toxin production // Harmful Algae. 2016. V. 56. P. 9–21.
  33. Hsieh D.P.H., Wang D., Chang G.H. Laboratory bioproduction of paralytic shellfish toxins in dinoflagellates // Adv. Appl. Microbiol. 2001. V. 49. P. 85–110.
  34. Hu H., Shi Y., Cong W. Improvement in growth and toxin production of Alexandrium tamarense by two-step culture method // J. Appl. Phycol. 2006. V. 18. P. 119–126.
  35. John E.H., Flynn K.G. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N: P supply ratios on internal toxin and nutrient levels // Eur. J. Phycol. 2000. V. 35. P. 11–23.
  36. Kellmann R., Mihali T.K., Jeon Y.J. et al. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria // Appl. Environ. Microbiol. 2008. V. 74. P. 4044–4053.
  37. Kim H., Park H., Wang H. et al. Low temperature and cold stress significantly increase saxitoxins (STXs) and expression of STX biosynthesis genes sxtA4 and sxtG in the dinoflagellate Alexandrium catenella // Mar. Drugs. 2021. V. 19. № 6. Art. ID291.
  38. Kim H.S., Park H., Wang H. et al. Saxitoxins-producing potential of the marine dinoflagellate Alexandrium affine and its environmental implications revealed by toxins and transcriptome profiling // Mar. Environ. Res. 2023. V. 185. № 2. Art. ID105874.
  39. Kremp A., Rengefors K., Montresorc M. Species specific encystment patterns in three Baltic cold-water dinoflagellates: the role of multiple cues in resting cyst formation // Limnol. Oceanogr. 2009. V. 54. № 4. P. 1125–1138.
  40. Kremp A., Godhe A., Egardt J. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions // Ecol. Evol. 2012. V. 2. № 6. P. 1195–1207.
  41. Laabir M., Collos Y., Masseret E. et al. Influence of environmental factors on the paralytic shellfish toxin content and profile of Alexandrium catenella (Dinophyceae) isolated from the Mediterranean Sea // Mar. Drugs. 2013. V. 11. № 5. P. 1583–1601.
  42. Lefebvre K.A., Bill B., Erickson A. et al. Characterization of dissolved and particulate saxitoxin levels in both field and cultured Alexandrium samples from Sequim Bay, WA // Mar. Drugs. 2008. V. 6. P. 103–116.
  43. Leong S.C.Y., Murata A., Nagashima Y., Taguchi S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations // Toxicon. 2004. V. 43. P. 407–415.
  44. Li F., Guo L., Chen J. et al. CO2 enrichment and excess nitrogen supply synergistically increase toxicity of marine dinoflagellate Alexandrium minutum // J. Hazard. Mater. 2024. V. 463. Art. ID132869. https://doi.org/10.1016/j.jhazmat.2023.132869
  45. Lim P.T., Leaw C.P., Sato S. et al. Effect of salinity on growth and toxin production of Alexandrium minutum isolated from a shrimp culture pond in northern Vietnam // J. Appl. Phycol. 2011. V. 23. P. 857–864.
  46. Lindström J., Grebner W., Rigby K., Selander E. Effects of predator lipids on dinoflagellate defence mechanisms — increased bioluminescence capacity // Sci. Rep. 2017. V. 7. Art. ID13104.
  47. Lippemeier S., Frampton D.M., Blackburn S.I. et al. Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence // J. Phycol. 2003. V. 39. P. 320–331.
  48. Longo S., Sibat M., Darius H.T. et al. Effects of pH and nutrients (nitrogen) on growth and toxin profile of the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) // Toxins (Basel). 2020. V. 12. Art. ID767.
  49. López-Rosales L., García-Camacho F., Sánchez-Mirón A. et al. Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes // Bioresour. Technol. 2016. V. 216. P. 845–855.
  50. McLachlan J.L., Marr J.C., Conlon-Keily A., Adamson A. Effects of nitrogen concentration and cold temperature on DSP-toxin concentrations in the dinoflagellate Prorocentrum lima (Prorocentrales, Dinophyceae) // Nat. Toxins. 1994. V. 2. P. 263–270.
  51. Mogilnikova T.A., Galanin D.А., Nikulina T.V. Potentially toxic algal species, seasonal variability of their quantitative indices and phycotoxin contents in Japanese scallop Mizuhopecten yessoensis (Jay, 1857) // Life-supporting Asia-Pacific marine ecosystems, biodiversity and their functioning. Beijing: Science Press. 2017. P. 113–118.
  52. Montuori E., De Luca D., Penna A. et al. Alexandrium spp.: from toxicity to potential biotechnological benefits // Mar. Drugs. 2023. V. 22. Art. ID31. https://doi.org/10.3390/md22010031
  53. Navarro J.M., Muñoz M.G., Contreras A.M. Temperature as a factor regulating growth and toxin content in the dinoflagellate Alexandrium catenella // Harmful Algae. 2006. V. 5. P. 762–769.
  54. Oliveira C.Y.B., Oliveira C.D.L., Müller M.N. et al. A scientometric overview of global dinoflagellate research // Publications. 2020. Art. ID50.
  55. Oshima Y., Bolch C.J., Hallegraeff G.M. Toxin composition of resting cysts of Alexandrium tamarense (Dinophyceae) // Toxicon. 1992. V. 30. № 12. P. 1539–1544.
  56. Parkhill J.-P., Cembella A.D. Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada // J. Plankton Res. 1999. V. 21. P. 939–955.
  57. Pinna A., Pezzolesi L., Pistocchi R. et al. Modelling the stoichiometric regulation of C-rich toxins in marine dinoflagellates // PLoS One. 2015. V. 10. № 9. Art. ID e0139046.
  58. Praptiwi R.A. Optimisation of high value metabolite production from benthic marine dinoflagellate Prorocentrum lima / PhD thesis. United Kingdom: Robert Gordon University, 2014. 236 p.
  59. Rhodes L., Selwood A., McNabb P. et al. Trace metal effects on the production of biotoxins by microalgae // Afr. J. Mar. Sci. 2006. V. 28. P. 393–397.
  60. Salas R., Murphy E., Doohan R. et al. Production of the dinoflagellate Amphidoma languida in a large scale photobioreactor and structure elucidation of its main metabolite AZA-39 // Harmful Algae. 2023. V. 127. Art. ID102471. https://doi.org/10.1016/j.hal.2023.102471
  61. Saldivia P., Hernández M., Isla A. et al. Proteomic and toxicological analysis of the response of dinoflagellate Alexandrium catenella to changes in NaNO3 concentration // Harmful Algae. 2023. V. 125. Art. ID102428. https://doi.org/10.1016/j.hal.2023.102428
  62. Schulze P.S.C., Barreira L.A., Pereira H.G.C. et al. Light emitting diodes (LEDs) applied to microalgal production // Trends Biotechnol. 2014. V. 32. P. 422–430.
  63. Selander E., Thor P., Toth G., Pavia H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates // Proc. R. Soc. B: Biol. Sci. 2006. V. 273. № 1594. P. 1673–1680.
  64. Shimada H., Motylkova I.V., Mogilnikova T.A. et al. Toxin profile of Alexandrium tamarense (Dinophyceae) from Hokkaido, northern Japan and southern Sakhalin, eastern Russia // Plankton Benthos Res. 2011. V. 6. № 1. P. 35–41.
  65. Stüken A., Orr R.J.S., Kellmann R. et al. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates // PLoS One. 2011. V. 6. Art. ID e20096.
  66. Tarazona-Janampa U.I., Cembella A.D., Pelayo-Zárate M.C. et al. Associated bacteria and their effects on growth and toxigenicity of the dinoflagellate Prorocentrum lima species complex from epibenthic substrates along Mexican coasts // Front. Mar. Sci. 2020. V. 7. Art. ID569.
  67. Tatters A.O., Flewelling L.J., Fu F. et al. High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from Southern California waters // Harmful Algae. 2013. V. 30. P. 37–43.
  68. Tobin E.D., Wallace C.L., Crumpton C. et al. Environmental drivers of paralytic shellfish toxin producing Alexandrium catenella blooms in a fjord system of northern Southeast Alaska // Harmful Algae. 2019. V. 88. Art. ID 101659.
  69. Tse S.P., Lee F.W., Mak D.Y. et al. Production of paralytic shellfish toxins (PSTs) in toxic Alexandrium catenella is intertwined with photosynthesis and energy production // Toxins (Basel). 2020. V. 12. Art. ID477.
  70. Tsuchiya S., Cho Y., Konoki K. et al. Synthesis and identification of proposed biosynthetic intermediates of saxitoxin in the cyanobacterium Anabaena circinalis (TA04) and the dinoflagellate Alexandrium tamarense (Axat-2) // Org. Biomol. Chem. 2014. V. 12. P. 3016–3020.
  71. Uribe P., Espejo R.T. Effect of associated bacteria on the growth and toxicity of Alexandrium catenella // Appl. Environ. Microbiol. 2003. V. 69. № 1. P. 659–662.
  72. Van de Waal D.B., Smith V.H., Declerck S.A.J. et al. Stoichiometric regulation of phytoplankton toxins // Ecol. Lett. 2014. V. 17. P. 736–742.
  73. Vanucci S., Guerrini F., Milandri A., Pistocchi R. Effects of different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima // Harmful Algae. 2010. V. 9. № 6. P. 590–599.
  74. Varkitzi I., Pagou K., Granéli E. et al. Unbalanced N : P ratios and nutrient stress controlling growth and toxin production of the harmful dinoflagellate Prorocentrum lima (Ehrenberg) Dodge // Harmful Algae. 2010. V. 9. № 3. P. 304–311.
  75. Vico P., Aubriot L., Martigani F. et al. Influence of nitrogen availability on the expression of genes involved in the biosynthesis of saxitoxin and analogs in Cylindrospermopsis raciborskii // Harmful Algae. 2016. V. 56. P. 37–43.
  76. Vingiani G.M., Stalberga D., De Luca P. et al. De novo transcriptome of the non-saxitoxin producing Alexandrium tamutum reveals new insights on harmful dinoflagellates // Mar. Drugs. 2020. V. 18. Art. ID386.
  77. Wang D., Hsieh D.P. Dynamics of C2 toxin and chlorophyll-a formation in the dinoflagellate Alexandrium tamarense during large scale cultivation // Toxicon. 2001. V. 39. № 10. P. 1533–1536.
  78. Wang H., Kim H., Ki J.-S. Transcriptome survey, molecular identification, and expression analysis of stress-responsive genes in the toxic dinoflagellate Alexandrium pacificum under algicidal agents and metal stresses // J. Appl. Phycol. 2021. V. 33. P. 3139–3151.
  79. Wang H., Kim H., Park H., Ki J.-S. Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum // Sci. Total Environ. 2022. V. 802. Art. ID149801.
  80. Wohlrab S., Iversen M.H., John U. A molecular and co-evolutionary context for grazer induced toxin production in Alexandrium tamarense // PLoS One. 2010. V. 5. № 11. Art. ID e15039.
  81. Xu J., Ho A.Y.T., He L. et al. Effects of inorganic and organic nitrogen and phosphorus on the growth and toxicity of two Alexandrium species from Hong Kong // Harmful Algae. 2012. V. 16. P. 89–97.
  82. Zhang H., Campbell D.A., Sturm N.R., Lin S. Dinoflagellate spliced leader RNA genes display a variety of sequences and genomic arrangements // Mol. Boil. Evol. 2009. V. 26. P. 1757–1771.
  83. Zhang Y., Zhang S.F., Lin L., Wang D.Z. Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant // Mar. Drugs. 2014. V. 12. P. 5698–5718.

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2025