Responses of aquatic organisms to marine pollution by drilling fluids and cuttings

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The active oil and gas development of on the continental shelf negatively affects marine organisms, degrading their habitat condition and reducing their viability. The effects of drilling fluids, cuttings, and their components on various marine organisms are analyzed. The feasibility of using marine organisms as indicators of the ecological status of coastal waters at sites of intensive oil and gas extraction is discussed. The prospects of using natural substitutes for toxic components in drilling fluids to mitigate environmental risks are assessed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Rudneva

Marine Hydrophysical Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: svg-41@mail.ru
ORCID iD: 0000-0002-9623-9467
Ресей, Sevastopol 299011

Әдебиет тізімі

  1. Беловодова О.С. Кормовая база охото-корейской популяции серых китов в условиях изменения природной среды и климата // Географическая среда и живые системы. 2021. № 3. С. 22–33. https://doi.org/10.18384/2712-7621-2021-3-22-33
  2. Бережной К.Г., Вербицкий С.В. Основные аспекты воздействия морских платформ на окружающую среду // Тр. Крыловского гос. науч. центра. 2022. Т. 2 (400). С. 169–176. https://doi.org/10.24937/2542-2324-2022-2-400-169-176
  3. Горбачева Е.А. Экотоксикологические исследования донных отложений центральных и восточных районов Баренцева моря // Вестн. МГТУ. 2020. Т. 23. № 2. С. 122–130. https://doi.org/10.21443/1560-9278-2020-23-2-122-130
  4. Патин С.А. Нефть и экология континентального шельфа. М.: ВНИРО, 2001. 247 с. URL: http://hdl.handle.net/123456789/1478
  5. Патин С.А. Морской нефтегазовый комплекс: факторы экологического риска // Защита окружающей среды в нефтегазовом комплексе. 2015. № 4. С. 5–14.
  6. Руднева И.И., Медянкина М.В., Шайда В.Г. Оценка токсичности буровых растворов для морских бентосных ракообразных // Экосистемы. 2023. Т. 34. С. 140–144.
  7. Руднева И.И., Шайда В.Г., Медянкина М.В., Шайда О.В. Оценка действия бурового раствора на зостеру Nanozostera noltii Hornemann // Вопр. современной альгологии. 2024. Т. 34. № 1 (Online).
  8. Седых В.Н., Игнатьев Л.А., Семенюк М.В. Реакции растений на воздействие отходов бурения. Новосибирск: Наука, 2004. 104 с.
  9. Тарасова С.М., Гаевая Е.В. Исследование токсичности буровых шламов и возможностей их утилизации // Проблемы региональной экономики. 2021. Т. 3. С. 75–79. https://doi.org/10.24412/1728-323X-2021-3-75-79
  10. Antia M., Ezejiofor A.N., Obasi C.N., Orisakwe O.E. Environmental and public health effects of spent drilling fluid: an updated systematic review // J. Hazard. Mater. Adv. 2022. V. 7. Art. ID 100120. https://doi.org/10.1016/j.hazadv.2022.100120
  11. Aslan J.F., Weber L., Iannacone J. et al. Toxicity of drilling fluids in aquatic organisms: a review // Ecotoxicol. Environ. Contam. 2019. V. 14. № 1. P. 35–47. https://doi.org/10.5132/eec.2019.01.04
  12. Bakhtyar S., Gagnon M. Biomarker response of pink snapper to chronic exposure to synthetic-based drilling muds // Environ. Bioindic. 2009. V. 4. № 2. P. 136–152. https://doi.org/10.1080/15555270902970611
  13. Bakhtyar S., Gagnon M.M. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs) // Environ. Monit. Assess. 2012. V. 184. P. 5311–5325. https://doi.org/10.1007/s10661-011-2342-x
  14. Bakke T., Klungsøyr J., Sanni S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry // Mar. Environ. Res. 2013. V. 92. P. 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012
  15. Barlow M.J., Kingston P.F. Observations on the effects of barite on the gill tissues of the suspension feeder Cerastoderma edule (Linné) and the deposit feeder Macoma balthica (Linné) // Mar. Pollut. Bull. 2001. V. 42. № 1. P. 71–76. https://doi.org/10.1016/S0025-326X(00)00117-X
  16. Bechmann R.K., Westerlund S., Baussant T. et al. Impacts of drilling mud discharges on water column organism and filter feeding bivalves // International Research Institute of Stavanger (IRIS) Rep. 2006. 72 p.
  17. Bejarano A.C., Adams J.E., McDowell J. et al. Recommendations for improving the reporting and communication of aquatic toxicity studies for oil spill planning, response, and environmental assessment // Aquat. Toxicol. 2023. V. 255. Art. ID 106391. https://doi.org/10.1016/j.aquatox.2022.106391
  18. Berge J.A. The effect of treated drill cuttings on benthic recruitment and community structure: main results of an experimental study on a natural seabed // The physical and biological effects of processed oil drill cuttings. E & P Forum Rep. 1996. № 2. 61/202. P. 41–63.
  19. Beyer J., Trannum H.C., Bakke T. et al. Environmental effects of the Deepwater Horizon oil spill: a review // Mar. Pollut. Bull. 2016. V. 110. № 1. P. 28–51. https://doi.org/10.1016/j.marpolbul.2016.06.027
  20. Bookhout C.G., Monroe R.J., Forward R.B. Jr., Costlow J.D. Jr. Effects of soluble fractions of drilling fluids on development of crabs, Rhithropanopeus harrisii and Callinectes sapidus // Water, Air, Soil Pollut. 1984. V. 21. P. 183–197. https://doi.org/10.1007/BF00163623
  21. Borah D., Gopalakrishnan S., Nooruddin T. Carbohydrate biolubricants from algae and cyanobacteria // J. Polym. Environ. 2021. V. 29. P. 3444–3458. https://doi.org/10.1007/s10924-021-02144-z
  22. Buapet B., Mohammadi N.S., Pernice M. et al. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri // Aquat. Toxicol. 2019. V. 207. P. 91–100. https://doi.org/10.1016/j.aquatox.2018.12.005
  23. Bybee K. Environmental aspects of the use and disposal of nonaqueous drilling fluids // J. Pet. Technol. 2004. V. 56. № 11. P. 64–84. https://doi.org/10.2118/1104-0064-JPT
  24. Cerón-Benavides S.M., Santos-Acevedo M., Cerón A.E.G. et al. Acute toxicity assessment of an offshore exploration fluid for the fertilization sea urchin Lytechinus variegatus // Bol. Invest. Mar. Cost. 2014. V. 43. № 2. P. 383–405.
  25. Cervello G., Olivier F., Chauvaud L. et al. Impact of anthropogenic sounds (pile driving, drilling and vessels) on the development of model species involved in marine biofouling // Front. Mar. Sci. 2023. V. 10. Art. ID 1111505. https://doi.org/10.3389/fmars.2023.1111505
  26. Conklin P.J., Rao K.R. Comparative toxicity of offshore and oil-added drilling muds to larvae of the grass shrimp Palaemonetes intermedius // Arch. Environ. Contam. Toxicol. 1984. V. 13. P. 685–690. https://doi.org/10.1007/BF01055931
  27. Contreras-León G.J., Rodríguez-Satizábal S.A., Castellanos-Romero C.M. et al. Acute toxicity of drilling muds on Litopenaeus vannamei (Boone, 1931) postlarvae // Cienc., Tecnol. Futuro. 2013. V. 5. № 3. P. 127–138. https://doi.org/10.29047/01225383.52
  28. Cranford P.J., Gordon D.C. Jr., Lee K. et al. Chronic toxicity and physical disturbance effects of water- and oil-based drilling fluids and some major constituents on adult sea scallops (Placopecten magellanicus) // Mar. Environ. Res. 1999. V. 48. № 3. P. 225–256. https://doi.org/10.1016/S0141-1136(99)00043-4
  29. Deka B. Drilling fluids and their types // Basics of drilling fluid. Noida, India: CIIR Scientific Publications. 2023. Ch. 2. P. 4–7.
  30. Denoyelle M., Geslin E., Jorissen F.J. et al. Innovative use of foraminifera in ecotoxicology: A marine chronic bioassay for testing potential toxicity of drilling muds // Ecol. Indic. 2012. V. 12. № 1. P. 17–25. https://doi.org/10.1016/j.ecolind.2011.05.011
  31. Du W., Wan Y., Zong N. et al. Status quo of soil petroleum contamination and evolution of bioremediation // Pet. Sci. 2011. V. 8. P. 502–514. https://doi.org/10.1007/s12182-011-0168-3
  32. Edge K.J., Johnston E.L., Dafforn K.A. et al. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti // Environ. Pollut. 2016. V. 212. P. 525–534. https://doi.org/10.1016/j.envpol.2016.02.047
  33. Ejileugha Ch., Ezejiofor A.N., Ezealisiji K.M. et al. Metal oxide nanoparticles in oil drilling: Aquatic toxicological concerns // J. Hazard. Mater. Adv. 2022. V. 7. Art. ID 100116. https://doi.org/10.1016/j.hazadv.2022.100116
  34. Farkas J., Bådsvik С.Y., Altin D. Acute and physical effects of water-based drilling mud in the marine copepod Calanus finmarchicus // J. Toxicol. Environ. Health. Pt. A. 2017. V. 80. № 16–18. P. 907–915. https://doi.org/10.1080/15287394.2017.1352197
  35. Folayan A.J., Dosunmu A., Oriji B. Microbial activity evaluation and aerobic transformation of deep water offshore synthetic drilling fluids in soil: a case study of ternary mixture of synthetic ethyl esters of plants oil (Seepmixture) synthetic drilling fluid in agbami (Niger delta) deep water field // Results Eng. 2022. V. 15. Art. ID 100537. https://doi.org/10.1016/j.rineng.2022.100537
  36. Gagnon M.M., Bakhtyar S. Induction of fish biomarkers by synthetic-based drilling muds // PLoS One. 2013. V. 8. № 7. Art. ID e69489. https://doi.org/10.1371/journal.pone.0069489
  37. Go L.Ch., Fortela D.L.B., Revellame E. et al. Biobased chemical and energy recovered from waste microbial matrices // Curr. Opin. Chem. Eng. 2019. V. 26. P. 65–71. https://doi.org/10.1016/j.coche.2019.08.005
  38. Holdway D.A. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes // Mar. Pollut. Bull. 2002. V. 44. P. 185–203. https://doi.org/10.1016/S0025-326X(01)00197-7
  39. Hu C., Yang X, Gao L. et al. Comparative analysis of heavy metal accumulation and bioindication in three seagrasses: Which species is more suitable as a bioindicator? // Sci. Total Environ. 2019. V. 669. P. 41–48. https://doi.org/10.1016/j.scitotenv.2019.02.425
  40. Ismail A.R., Moslan M.S., Ismail N.J. Toxicity effect on Peocilia latipinna using different types of nonaqueous drilling fluids // 12th Int. UMT Annu. Symp. (UMTAS 2013) “Advancements in Marine and Freshwater Sciences”. Kuala Terengganu, Malaysia, 2013. P. 211–216.
  41. Jones R., Wakeford M., Currey-Randall L. et al. Drill cuttings and drilling fluids (muds) transport, fate and effects near a coral reef mesophotic zone // Mar. Pollut. Bull. 2021. V. 172. Art. ID 112717. https://doi.org/10.1016/j.marpolbul.2021.112717
  42. Kelly J.R., Duke T.W., Harwell M.A., Harwell C.C. An ecosystem perspective on potential impacts of drilling fluid discharges on seagrasses // Environ. Manage. 1987. V. 11. P. 537–562. https://doi.org/10.1007/BF01867661
  43. Khalturin A.A., Parfenchik K.D., Shpenst V.A. Features of oil spills monitoring on the water surface by the Russian Federation in the Arctic Region // J. Mar. Sci. Eng. 2023. V. 11. Art. ID 111. https://doi.org/10.3390/jmse11010111
  44. Kuperman R.G., Checkai R.T., Phillips C.T. et al. Toxicity assessments of antimony, barium, beryllium, and manganese for development of ecological soil screening levels (Eco-SSL) using enchytraeid reproduction benchmark values // Edgewood Chemical Biological Center. Aberdeen Proving Ground, Md., USA. Rep. No. toxnet:NTIS/02928275. 86 p. URL: http://handle.dtic.mil/100.2/ADA422074
  45. Lewis M., Pryor R. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability // Environ. Pollut. 2013. V. 180. P. 345367. https://doi.org/10.1016/j.envpol.2013.05.001
  46. Lira V.F., Santos G.A.P., Derycke S. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina // Mar. Environ. Res. 2011. V. 72. P. 151–159. https://doi.org/10.1016/j.marenvres.2011.07.003
  47. Liu Y., Chen Q., Li Y. et al. Toxic effects of cadmium on fish // Toxics. 2022. V. 1. Art. ID 622. https://doi.org/10.3390/toxics10100622
  48. Macauley J.M., Clark J.R., Pitts A.R. Use of Thalassia and its epiphytes for toxicity assessment: effects of a drilling fluid and tributyltin // Plants for toxicity assessment. Philadelphia: ASTM International, 1990. https://doi.org/10.1520/STP19068S
  49. Mahmoud H., Mohammed A.A.A., Nasser M. et al. Green drilling fluid additives for a sustainable hole-cleaning performance: a comprehensive review // Emergent Mater. 2024. V. 7. P. 387–402 https://doi.org/10.1007/s42247-023-00524-w
  50. Marinho L.S., Pereira B.C., Guandalim F.P., Cavalcante L.M. Monitoring of drilling fluids and cuttings as an environmental management tool for fluid operations // Offshore Technol. Conf. (Houston, Texas, USA, May 6–9, 2024). 2024. https://doi.org/10.4043/35329-MS
  51. Marsden I.D., Cranford P.J. Scallops and marine contaminants // Dev. Aquacult. Fish. Sci. 2016. V. 40. P. 567–584. https://doi.org/10.1016/S0167-9309(06)80040-2
  52. Mazlova E.A., Malina N., Semenycher V.G. Study of influence of drilling wastes on Black Sea planktonic and benthic organisms // Chem. Technol. Fuels Oils. 2019. V. 55. № 5. P. 70-84. https://doi.org/10.1007/s10553-019-01005-9
  53. Melton H.R., Smith J.P., Mairs H.L. et al. Environmental aspects of the use and disposal of non-aqueous drilling fluids associated with offshore oil & gas operations // SPE Int. Conf. on Health, Safety, and Environment in Oil and Gas Exploration and Production (Calgary, Alberta, Canada. March 2004). 2004. Pap. No. SPE-86696-MS. https://doi.org/10.2118/86696-MS
  54. Mohammadi N.S., Buapet P., Pernice M. et al. Transcriptome profiling analysis of the seagrass, Zostera muelleri under copper stress // Mar. Pollut. Bull. 2019. V. 149. Art. ID 110556. https://doi.org/10.1016/j.marpolbul.2019.110556
  55. Neff J.M. Composition, environmental fates, and biological effects of water-based drilling muds and cuttings discharged to the marine environment: A synthesis and annotated bibliography. Prepared for Petroleum Environmental Research Forum (PERF) and American Petroleum Institute. 2003. 83 p.
  56. Neshovska H., Manev I., Kirov V. Heavy metal levels in water, brown algae (Cystoseira barbata), and eelgrass (Zostera marina) from the Southern Black Sea coast of Bulgaria // Int. J. Vet. Sci. Anim. Husb. 2021. V. 6. № 1. P. 15–18. https://doi.org/10.22271/veterinary.2021.v6.i1a.317
  57. Netto S.A., Gallucci F., Fonseca G. Deep-sea meiofauna response to synthetic-based drilling mud discharge off SE Brazil // Deep-Sea Res. Pt. II. 2009. V. 56. № 1–2. P. 41–49. https://doi.org/10.1016/j.dsr2.2008.08.018
  58. Nrior R.R., Odokuma L.O. Comparative toxicity of drilling fluids to marine water shrimp (Mysidoposis bahia) and brackish water shrimp (Palaemonetes africanus) // IOSR J. Environ. Sci. Toxicol. Food Technol. 2015. V. 9. № 7. P. 73–79. https://doi.org/10.9790/2402-09727379
  59. Ogeleka D.F., Tudararo-Aherobo L.E. Short-term toxicity of oil-based drilling fluid to the brackish-water shrimp Palaemonetes africanus // Afr. J. Aquat. Sci. 2011. V. 36. № 1. P. 109–112. https://doi.org/10.2989/16085914.2011.559707
  60. Okogbue C.O., Anyiam O.A., Adun A.A. Impact assessment of drilling waste generated in “Eden Field” offshore, Niger Delta, Nigeria // Arabian J. Geosci. 2016. V. 9. Art. no. 538. https://doi.org/10.1007/s12517-016-2568-6
  61. Østgaard K., Jensen A. Acute phytotoxicity of oil-based drilling muds // Oil Petrochem. Pollut. 1985. V. 2. № 4. P. 281–291. https://doi.org/10.1016/S0143-7127(85)90261-3
  62. Otaigbe J.O.E., Osuji L.C., Azubike A.N. Quantal response of Palaemonetes africanus in locally formulated drilling mud lubricants // Toxicol. Environ. Chem. 2006. V. 88. № 4. P. 719–727. https://doi.org/10.1080/02772240600903029
  63. Pereira L.B., Sad C.M.S., Castro E.V.R. et al. Environmental impacts related to drilling fluid waste and treatment methods: A critical review // Fuel. 2022. V. 310. Pt. B. Art. ID 122301. https://doi.org/10.1016/j.fuel.2021.122301
  64. Pérez M.A., Rengifo R., Pereira C., Hernández M. Dividivi tannins: an ecological product for water-based drilling fluids // Environ. Dev. Sustain. 2017. V. 19. P. 1815–1829. https://doi.org/10.1007/s10668-016-9829-0
  65. Price II W.A., Macauley J.M., Clark J.R. Effects of drilling fluids on Thalassia testudinum and its epiphytic algae // Environ. Exp. Bot. 1986. V. 26. № 4. P. 321–330. https://doi.org/10.1016/0098-8472(86)90019-5
  66. Qiao Y., Zhang Y., Xu S. et al. Multi-leveled insights into the response of the eelgrass Zostera marina L to Cu than Cd exposure // Sci. Total Environ. 2022. V. 845. Art. ID 157057. https://doi.org/10.1016/j.scitotenv.2022.157057
  67. Raimondi P.T., Barnett A.M., Krause P.R. The effects of drilling muds on marine invertebrate larvae and adults // Environ. Toxicol. Chem. 1997. V. 16. P. 1218–1228. https://doi.org/10.1002/etc.5620160617
  68. Rudneva I.I. Interspecies peculiarities of biomarkers response of marine fish embryos to oil pollution // Pollution. 2023. V. 9. № 1. Р. 243–253. http://doi.org/10.22059/poll.2022.345522.1530
  69. Sanni S., Pampanin D.M., Goonewardene S.P. et al. Ecotoxicity of thermally treated oil-based drilling wastes // Proc. 4th Int. Conf. on Industrial and Hazardous Waste Management. Chania. 2014. V. 2. № 5. 8 p.
  70. Santos M.F.L., Silva J., Fachel J.M.G., Pulgati F.H. Effects of non-aqueous fluids-associated drill cuttings discharge on shelf break macrobenthic communities in the Campos Basin, Brazil // Environ. Monit. Assess. 2010. V. 167. P. 65–78. https://doi.org/10.1007/s10661-010-1518-0
  71. Schatten G., Simerly C., Schatten H. Effects of barium sulfate on sea urchin fertilization and early development // Energy wastes in the ocean. New York: John Wiley & Sons, 1982. P. 233–239.
  72. Seyedmohammadi J. The effects of drilling fluids and environment protection from pollutants using some models // Model. Earth Syst. Environ. 2017. V. 3. Art. ID 23. https://doi.org/10.1007/s40808-017-0299-7
  73. Short F.T., Kosten S., Morgan P.A. et al. Impacts of climate change on submerged and emergent wetland plants // Aquat. Bot. 2016. V. 135. P. 3–17. https://doi.org/10.1016/j.aquabot.2016.06.006
  74. Sil A., Wakadikar K., Kumar S. et al. Toxicity characteristics of drilling mud and its effect on aquatic fish populations // J. Hazard., Toxic Radioact. Waste. 2012. V. 16. № 1. P. 51–57. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000092
  75. Soegianto A., Irawan B., Affandi M. Toxicity of drilling waste and its impact on gill structure of post larvae of tiger prawn (Penaeus monodon) // Global J. Environ. Res. 2008. V. 2. P. 36–41.
  76. Spangenberg J.V., Cherr G.N. Developmental effects of barium exposure in a marine bivalve (Mytilus californianus) // Environ. Toxicol. Chem. 1996. V. 15. P. 1769–1774. https://doi.org/10.1002/etc.5620151018
  77. Still I., Rabke S., Candler J. Development of a standardized reference sediment to improve the usefulness of marine benthic toxicity testing as a regulatory tool // Environ. Toxicol. 2000. V. 15. № 5. P. 406–416. https://doi.org/10.1002/1522-7278(2000)15:5<406::AID-TOX8>3.0.CO;2-%23
  78. Strachan M.F., Kingston P.F. A comparative study on the effects of barite, ilmenite and bentonite on four-suspension-feeding bivalves // Mar. Pollut. Bull. 2012. V. 64. № 10. P. 2029–2038. https://doi.org/10.1016/j.marpolbul.2012.06.023
  79. Tamala J.K., Maramag E.I., Simeon K.A., Ignacio J.J. A bibliometric analysis of sustainable oil and gas production research using VOSviewer // Cleaner Eng. Technol. 2022. V. 7. Art. ID 100437. https://doi.org/10.1016/j.clet.2022.100437
  80. Thibodeaux G.M., Baudoin N.A., Chirdon W.M. Investigation of proteinaceous algal biomass as a drilling fluid component // Results Eng. 2023. V. 19. Art. ID 101364. https://doi.org/10.1016/j.rineng.2023.101364
  81. Tsvetnenko Y.B., Black A.J., Evans L.H. Development of marine sediment reworker tests with Western Australian species for toxicity assessment of drilling mud // Environ. Toxicol. 2000. V. 15. № 5. P. 540–548. https://doi.org/10.1002/1522-7278(2000)15:5<540::AID-TOX26>3.0.CO;2-A
  82. Xiong D., Han X. Particular pollutants, human health risk and ecological risk of oil-based drilling fluid: a case study of Fuling shale gas field // Environ. Geochem. Health. 2023. V. 45. P. 981–995. https://doi.org/10.1007/s10653-022-01259-z
  83. Yalman E., Federer-Kovacs G., Tolga Depci T. et al. Development of novel inhibitive water-based drilling muds for oil and gas field applications // J. Pet. Sci. Eng. 2022. V. 210. Art. ID 109907. https://doi.org/10.1016/j.petrol.2021.109907
  84. Yan T., Zhou M.-J., Tan Z.-J. et al. Application of Neomysis awatschensis as a standard marine toxicity test organism in China // J. Environ. Sci. (China). 2003. V. 15. № 6. P. 791–795.
  85. Zhao Z., Liu Q., Liao Y. et al. Ecological risk assessment of trace metals in sediments and their effect on benthic organisms from the south coast of Zhejiang province, China // Mar. Pollut. Bull. 2023. V. 187. Art. ID 114529. https://doi.org/10.1016/j.marpolbul.2022.114529
  86. Zheng G., He Y. Dynamic response of microbial communities to thermally remediated oil-bearing drilling waste in wheat soil // Chemosphere. 2023. V. 329. Art. ID 138618. https://doi.org/10.1016/j.chemosphere.2023.138618
  87. Zhu H., Liu X. Application of Microtox biological toxicity testing technique in drilling fluid analysis // Drill. Fluid & Completion Fluid. 2015. V. 32. № 1. P. 53–56. https://doi.org/10.3969/j.issn.1001-5620.2015.01.014

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Classification of drilling fluids.

Жүктеу (171KB)

© The Russian Academy of Sciences, 2025