Stochastic Growth Model of Pollack Gadus chalcogrammus (Pallas, 1814)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A mathematical model is proposed that describes the age-related dynamics of the vector of means and the covariance matrix of characters of individuals in the Sakhalin pollock population Gadus chalcogrammus (Pallas, 1814). The model is based on the Bertalanffy and Gompertz equations. The covariance matrix is composed of two parts: noise (caused by rapid random fluctuations in environmental conditions) and structural (due to intrapopulation variability of the parameters included in the growth equations). The model well reproduces the age dynamics of the distribution of fish according to the quantitative characters of individuals. The age-related increase, the passing through a maximum at a young age, the subsequent decrease in dispersions and their stabilization at low levels in the length and mass of the body of adult fish have been described. The age-related decrease in the correlation between length and body mass has been explained.

作者简介

V. Sukhanov

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch,
Russian Academy of Sciences; Far-Eastern Federal University

编辑信件的主要联系方式.
Email: vsukhan@mail.ru
Russia, 690041, Vladivostok; Russia, 690001, Vladivostok

参考

  1. Бард Й. Нелинейное оценивание параметров. М.: Статистика. 1979. 349 с.
  2. Животовский Л.А. Интеграция полигенных систем в популяциях. М.: Наука. 1984. 182 с.
  3. Коздоба Л.А. Методы решения нелинейных задач теплопроводности. М.: Наука. 1975. 227 с.
  4. Мина М.В., Клевезаль Г.А. Рост животных. М.: Наука. 1976. 291 с.
  5. Суханов В.В. Стохастическая модель роста рыб // Вопр. ихтиологии. 1980. Т. 20. № 4. С. 615−624.
  6. Суханов В.В., Лопатин О.Е. Математическое моделирование роста и развития Chironomus thummi // Деп. в ВИНИТИ 30.06.88 № 5244-В88. Владивосток. 1988. 57 с.
  7. Суханов В.В., Селин Н.И. Модель стохастического многомерного роста Mizuhopecten yessoensis (Jay, 1857) (Bivalvia: Pectinidae) // Биол. моря. 2018. Т. 44. № 5. С. 1−8.
  8. Тихонов В.И., Миронов М.А. Марковские процессы. М.: Сов. радио. 1977. 488 с.
  9. Томович Р., Вукобратович М. Общая теория чувствительности. Серия “Библиотека технической кибернетики”. М.: Сов. радио. 1972. 240 с.
  10. Шмальгаузен И.И. Определение основных понятий и методика исследования роста. Л.: Биомедгиз. 1935. 53 с.
  11. Sukhanov V.V. Generalization of Bertalanffy-Gompertz model for multidimensional stochastic growth of organisms // Marine Biodiversity for a Healthy Ocean – Biodiversity, Functional Groups and Ocean Health. Proc. of the Russia-China Bilateral Workshop. October 10−11, 2019. Vladivostok. Russia. P. 130−132.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (95KB)
3.

下载 (136KB)
4.

下载 (160KB)

版权所有 © В.В. Суханов, 2023