Cadmium(II)-Organic Frameworks with the Polynuclear Unit: Dimensionality Control and Luminescence Response to Pyridine

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New porous metal-organic frameworks (MOF) [Cd7(Btdc)7(Bpa)2(Dmf)2(H2O)2] · 15Dmf · 2H2O (I) and [Cd7(Btdc)7(Bpe)2(Dmf)2] · 15Dmf · 3H2O (II) (H2Btdc is 2,2’-bithiophene-5,5’-dicarboxylic acid, Bpa is 1,2-bis(4-pyridyl)ethane, Bpe is 1,2-bis(4-pyridyl)ethylene, and Dmf is N,N-dimethylformamide) are synthesized under solvatothermal conditions. The structures and compositions of the compounds are determined by single-crystal X-ray diffraction (XRD) (CIF files ССDС nos. 2364290 (I) and 2364289 (II)) and confirmed by powder XRD, elemental analysis, thermogravimetry, and IR spectroscopy. Compound I has a 2D structure based on the heptanuclear discrete building unit {Cd7} with the linear structure. Compound II is a 3D MOF in which the {Cd7} building units are linked into a continuous chain motif due to additional interactions. The formation of discrete or continuous chains is directly related to the nature of the N-donor bridging ligand (Bpe or Bpa). Compounds I and II have open structures with the accessible volume about 50%. The solvate molecules are replaced by thiophene, benzene, and pyridine, and the luminescence properties of the prepared adducts are studied. Luminescence quenching in the presence of thiophene and an increase in the luminescence intensity in the presence of pyridine accompanied by a change in the quantum yield by 4–5 times are shown.

全文:

受限制的访问

作者简介

V. Dubskikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: dan@niic.nsc.ru
俄罗斯联邦, Novosibirsk

A. Lysova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: dan@niic.nsc.ru
俄罗斯联邦, Novosibirsk

D. Samsonenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: dan@niic.nsc.ru
俄罗斯联邦, Novosibirsk

D. Dybtsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dan@niic.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
  2. Amooghin A.E., Sanaeepur H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 7427.
  3. Chen K., Mousavi S.H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 1139.
  4. Shen Y., Tissot F., Serre C. // Chem. Sci. 2022. V. 13. P. 13978.
  5. Fang X., Zong, B., Mao, S. // Nano-Micro Lett. 2018. V. 10. P. 63.
  6. Sohrabi H., Ghasemzadeh S., Ghoreishi Z. et al. // Mater. Chem. Phys. 2023. V. 299. Р. 127512.
  7. Tranchemontagne D.J., Mendoza-Cortes J.L., O′Keeffe M. et al. // Chem. Soc. Rev. 2009. V. 38. P. 1257.
  8. Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
  9. Borsari M. // Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd., 2014. P. 1.
  10. Borsari M. // Encyclopedia of Inorganic Chemistry. John Wiley & Sons, Ltd., 2006. P. 1.
  11. Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2024. V. 26. P. 3077.
  12. Guo X.-Z., Chen S.-S. et al. // ACS Omega. 2019 V. 4. P. 11540.
  13. Guo Z., Cao R., Li. X. // Eur. J. Inorg. Chem. 2007. V. 5. P. 742.
  14. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2022. V. 63. P. 1831.
  15. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2020. V. 61. P. 1800.
  16. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Crystal Research and Technology. 2020. V. 55. Р. 1900184.
  17. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y. et al. // Crystals. 2017. V. 7. P. 325.
  18. Kabsch W. // XDS Acta Crystallogr. D. 2010. V. 66. P. 125.
  19. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  20. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  21. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281.
  22. Speck A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  23. Yudina Y.A., Samsonova A.M., Bolotov V.A. et al. // J. Struct. Chem. 2021. V. 62. P. 1599.
  24. Einkauf J.D., Ortega R.E. et al. // New J. Chem. 2017. V.41. P. 10929.
  25. Zhao J., Wang X.-L., Shi X. et al. // Inorg. Chem. 2011. V. 50. P. 3198.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of coordination polymer I: structure of the secondary building block (a); projection of the three-dimensional coordination polymer in different directions (b-d); view of the packing of layers along the crystallographic axis a (e). Hydrogen atoms and guest solvent molecules are not shown for clarity.

下载 (691KB)
3. Fig. 2. Structure of coordination polymer II: structure of the secondary building block (a); projection of the two-dimensional coordination polymer in different directions (b-d). Hydrogen atoms and guest solvent molecules are not shown for clarity.

下载 (607KB)
4. Fig. 3. Comparison of experimental (red) and theoretical (black) powder diffractograms for compounds I (a) and II (b).

下载 (193KB)
5. Fig. 4. Thermogravimetric curves for compounds I (red) and II (black).

下载 (84KB)
6. Fig. 5. Photoluminescence emission spectra of compounds I (a) and II (b) for samples: freshly synthesized (black) and aged in thiophene (green), benzene (red), pyridine (blue).

下载 (176KB)
7. Supplementary
下载 (506KB)

版权所有 © Российская академия наук, 2024