First Example of Coordination Polymer Based on Tetrahedral Cluster Cyanocomplex of Rhenium and Barium
- Autores: Ermolaev A.V1, Mironov Y.V1
-
Afiliações:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 51, Nº 11 (2025)
- Páginas: 703-708
- Seção: Articles
- URL: https://transsyst.ru/0132-344X/article/view/697701
- DOI: https://doi.org/10.7868/S3034549925110033
- ID: 697701
Citar
Texto integral
Resumo
In this work, the interaction of the anionic tetrahedral cluster complex of rhenium [Re4(AsO)4(CN)12]8– with Ba2+ was investigated. The reaction under hydrothermal conditions results in the formation of a framework coordination polymer [{Ba4(H2O)9}Re4(AsO)4(CN)12]·15H2O (I). The coordination polymer is formed from cluster anions [Re4(AsO)4(CN)12]8– and cationic fragments [{Ba4(H2O)9}8+, linked by CN– bridges. The resulting compound was characterized by single crystal X-ray diffraction (CCDC no. 2441985), PXRD, IR and elemental analysis.
Palavras-chave
Sobre autores
A. Ermolaev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: ermolaev@niic.nsc.ru
ORCID ID: 0000-0002-6230-2528
PhD in Chemistry, Researcher Novosibirsk, Russian Federation
Yu. Mironov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: yuri@niic.nsc.ru
ORCID ID: 0000-0002-8559-3313
Dr. Sci. in Chemistry, Chief Researcher Novosibirsk, Russian Federation
Bibliografia
- Cordier S., Molard Y., Brylev K.A. et al. // J. Clust. Sci. 2015. V. 26. P. 53. https://doi.org/10.1007/s10876-014-0734-0
- Fedorov V. // J. Clust. Sci. 2015. V. 26. P. 3. https://doi.org/10.1007/s10876-014-0736-y
- Mironov Yu.V., Fedorov V.E. // Russ. Chem. Bull. 2002. V. 51. P. 569. https://doi.org/10.1023/a:1015843529164
- Efremova O.A., Mironov Yu.V., Fedorov V.E. // Eur. J. Inorg. Chem. 2006. P. 2533. https://doi.org/10.1002/ejic.200600178
- Pronin A.S., Smolentsev A.I., Kozlova S.G. et al. // Inorg. Chem. 2019. V. 58. P. 7368. https://doi.org/10.1021/acs.inorgchem.9b00520
- Pronin A.S., Smolentsev A.I., Mironov Yu.V. // Russ. Chem. Bull. 2020. V. 69. P. 2129.
- Pronin A.S., Smolentsev A.I., Mironov Yu.V. // J. Struct. Chem. 2020. V. 61. P. 95. https://doi.org/10.1134/S0022476620010102
- Pronin A.S., Mironov Yu.V. // Russ. J. Coord. Chem. 2024. V. 50. P. 945. https://doi.org/10.1134/S1070328424600797
- Li H., Ermolaev A.V., Pronin A.S. et al. // Inorg. Chem. Front. 2024. V. 10. 6671. https://doi.org/10.1039/d4qi01151a
- Ermolaev A.V., Li H.-Y., An B.-G. et al. // J. Struct. Chem. 2025. V. 66. 143988. https://doi.org/10.26902/JSC_id143988
- APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11). Madison (WI, USA): Bruker Advanced X-ray Solutions, 2004.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/s2053229614024218
- DIAMOND (version 3.2a). Bonn (Germany): Crystal Impact GbR, 2009.
- Imoto H., Naumov N.G., Virovets A.V. et al. // J. Struct. Chem. 1998. V. 39. P. 720). https://doi.org/10.1007/bf02903545
- Mironov Yu.V., Fedorov V.E., Bang H.J. et al. // Eur. J. Inorg. Chem. 2006. P. 553. https://doi.org/10.1002/ejic.200500738
Arquivos suplementares
