Influence of the Cultivation Conditions of Glioblastoma Cells on the Expression of Transcription Factors Genes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cellular heterogeneity is a feature of glioblastoma, a malignant and aggressive brain tumor, and one of the reasons for the ineffectiveness of standard treatment methods, probably arising from the differentiation of tumor stem cells. The causes of increased adaptive abilities and resistance of glioblastoma cells to drugs and stress arise at the level of molecular processes. For this reason, there were evaluated changes in the expression of the genes of transcription factors MYCN, MYCC, PHOX2A and PHOX2B, which are involved in the regulation of the cell cycle and differentiation, using real-time PCR in response to changes in cultivating conditions in this work. As a result, it was shown that primary cultures in an environment with fetal bovine serum acquire morphology and gene expression similar to cell lines. In addition, it was shown for the first time that all cell lines and primary cultures of glioblastoma differ in the expression profiles of the studied genes, however, in response to changes in cultivating conditions, all of them demonstrate a multiple increase in MYCN expression, as well as the opposite response of PHOX2A and PHOX2B, indicating a possible role of these genes in glioblastoma resistance to stress. The obtained data should be taken into account while selecting individual treatment for patients, as well as when developing therapeutic agents and further investigating molecular processes in glioblastoma cells.

About the authors

A. I. Rezekina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

D. V. Mazur

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

M. I. Shakhparonov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

N. V. Antipova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; National Research University "Higher School of Economics"

Email: nadine.antipova@gmail.com
Moscow, Russia; Moscow, Russia

References

  1. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O. // N. Engl. J. Med. 2005. V. 352. P. 987–996. https://doi.org/10.1056/NEJMoa043330
  2. Yersal Ö. // J. Oncol. Sci. 2017. V. 3. P. 123–126. https://doi.org/10.1016/j.jons.2017.10.005
  3. Wick W., Platten M. // Cancer Discov. 2014. V. 4. P. 1120–1122. https://doi.org/10.1158/2159-8290.CD-14-0918
  4. Sidaway P. // Nat. Rev. Clin. Oncol. 2017. V. 14. P. 587. https://doi.org/10.1038/nrclinonc.2017.122
  5. Xu C., Hou P., Li X., Xiao M., Zhang Z., Li Z., Xu J., Liu G., Tan Y., Fang C. // Cancer Biol. Med. 2024. V. 21. P. 363–381. https://doi.org/10.20892/j.issn.2095-3941.2023.0510
  6. Fedele M., Cerchia L., Pegoraro S., Sgarra R., Manfioletti G. // Int. J. Mol. Sci. 2019. V. 20. P. 2746. https://doi.org/10.3390/ijms20112746
  7. Wang Z., Zhang H., Xu S., Liu Z., Cheng Q. // Signal Transduct. Target. Ther. 2021. V. 6. P. 124. https://doi.org/10.1038/s41392-021-00491-w
  8. Грабовенко Ф.И., Кисиль О.В., Павлова Г.В., Зверева М.Э. // Вопросы нейрохирургии им. Н.Н. Бурденко. 2022. V. 86. P. 113–120. https://doi.org/10.17116/neiro202286061113
  9. Dick J.E. // Blood. 2008. V. 112. P. 4793–4807. https://doi.org/10.1182/blood-2008-08-077941
  10. Chu X., Tian W., Ning J., Xiao G., Zhou Y., Wang Z., Zhai Z., Tanzhu G., Yang J., Zhou R. // Signal Transduct. Target. Ther. 2024. V. 9. P. 170. https://doi.org/10.1038/s41392-024-01851-y
  11. Li C., Cho H.J., Yamashita D., Abdelrashid M., Chen Q., Bastola S., Chagoya G., Elsayed G.A., Komarova S., Ozaki S., Ohtsuka Y., Kunieda T., Kornblum H.I., Kondo T., Nam D.H., Nakano I. // Neurooncol. Adv. 2020. V. 2. P. vdaa163. https://doi.org/10.1093/noajnl/vdaa163
  12. Behnan J., Stangeland B., Hosainey S.A., Joel M., Olsen T.K., Micci F., Glover J.C., Isakson P., Brinchmann J.E. // Oncogene. 2017. V. 36. P. 570–584. https://doi.org/10.1038/onc.2016.230
  13. Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. // Nature. 2006. V. 444. P. 756–760. https://doi.org/10.1038/nature05236
  14. Hui A.B., Lo K.W., Yin X.L., Poon W.S., Ng H.K. // Lab. Invest. 2001. V. 81. P. 717–723. https://doi.org/10.1038/labinvest.3780280
  15. Hodgson J.G., Yeh R.F., Ray A., Wang N.J., Smirnov I., Yu M., Hariono S., Silber J., Feiler H.S., Gray J.W., Spellman P.T., Vandenberg S.R., Berger M.S., James C.D. // Neuro Oncol. 2009. V. 11. P. 477–487. https://doi.org/10.1215/15228517-2008-113
  16. Wang J., Wang H., Li Z., Wu Q., Lathia J.D., Mc- Lendon R.E., Hjelmeland A.B., Rich J.N. // PLoS One. 2008. V. 3. P. e3769. https://doi.org/10.1371/journal.pone.0003769
  17. Cencioni C., Scagnoli F., Spallotta F., Nasi S., Illi B. // Int. J. Mol. Sci. 2023. V. 24. P. 4217. https://doi.org/10.3390/ijms24044217
  18. Borgenvik A., Čančer M., Hutter S., Swartling F.J. // Front. Oncol. 2021. V. 10. P. 626751. https://doi.org/10.3389/fonc.2020.626751
  19. Pattyn A., Morin X., Cremer H., Goridis C., Brunet J.F. // Development. 1997. V. 124. P. 4065–4075. https://doi.org/10.1242/dev.124.20.4065
  20. Morin X., Cremer H., Hirsch M.R., Kapur R.P., Goridis C., Brunet J.F. // Neuron. 1997. V. 18. P. 411–423. https://doi.org/10.1016/s0896-6273(00)81242-8
  21. Paris M., Wang W.H., Shin M.H., Franklin D.S., Andrisani O.M. // Mol. Cell. Biol. 2006. V. 26. P. 8826– 8839. https://doi.org/10.1128/MCB.00575-06
  22. Dubreuil V., Hirsch M.R., Pattyn A., Brunet J.F., Goridis C. // Development. 2000. V. 127. P. 5191– 5201. https://doi.org/10.1242/dev.127.23.5191
  23. Longo L., Borghini S., Schena F., Parodi S., Albino D., Bachetti T., Da Prato L., Truini M., Gambini C., Tonini G.P., Ceccherini I., Perri P. // Int. J. Oncol. 2008. V. 33. P. 985–991.
  24. Perri P., Ponzoni M., Corrias M.V., Ceccherini I., Candiani S., Bachetti T. // Cancers (Basel). 2021. V. 13. P. 5528. https://doi.org/10.3390/cancers13215528
  25. Lee J., Kotliarova S., Kotliarov Y., Li A., Su Q., Donin N.M., Pastorino S., Purow B.W., Christopher N., Zhang W., Park J.K., Fine H.A. // Cancer Cell. 2006. V. 9. P. 391–403. https://doi.org/10.1016/j.ccr.2006.03.030
  26. Müller M., Trunk K., Fleischhauer D., Büchel G. // EJC Paediatr. Oncol. 2024. V. 4. P. 100182. https://doi.org/10.1016/j.ejcped.2024.100182

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences