Discovery and Identification of Plant Regulatory Peptides
- Authors: Skripnikov A.Y.1, Vorobeva E.E1, Taliansky M.E2, Kalinina N.O2
-
Affiliations:
- Lomonosov Moscow State University, Biological Faculty
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 51, No 5 (2025)
- Pages: 743-757
- Section: ОБЗОРНЫЕ СТАТЬИ
- URL: https://transsyst.ru/0132-3423/article/view/695704
- DOI: https://doi.org/10.31857/S0132342325050022
- ID: 695704
Cite item
Abstract
Plant regulatory peptides represent a novel class of signaling molecules that play a central role in the regulation of plant growth, development, and stress responses. Owing to their high biological activity at low concentrations, they are considered promising biostimulants for environmentally sustainable agriculture. This review summarizes key theoretical approaches and experimental methods used for the discovery and identification of these peptides, including mass spectrometry, bioinformatics, bioassays, and in silico screening. An overview is provided of the major peptides identified to date – such as systemin, PSK, PSY, AtPep1, CLV3, TDIF, CEP, and CIF – along with the methods used for their isolation, chemical synthesis, and functional validation. Special attention is given to model systems based on cell cultures and seedlings, which are commonly employed to screen peptide activity, as well as to strategies for identifying their corresponding receptors. The review highlights the critical role of bioassays as a final and indispensable stage in peptide discovery pipelines, enabling the functional evaluation of both identified and putative peptides.
About the authors
A. Yu Skripnikov
Lomonosov Moscow State University, Biological Faculty
Email: deptbioorg@gmail.com
Moscow, Russia
E. E Vorobeva
Lomonosov Moscow State University, Biological FacultyMoscow, Russia
M. E Taliansky
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
N. O Kalinina
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
References
- Tavormina P., De Coninck B., Nikonorova N., De Smet I., Cammue B.P.A. // Plant Cell. 2015. V. 27. P. 2095–2118. https://doi.org/10.1105/tpc.15.00440
- Matsubayashi Y. // Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2018. V. 94. P. 59–74. https://doi.org/10.2183/pjab.94.006
- Hellinger R., Sigurdsson A., Wu W., Romanova E.V., Li L., Sweedler J.V., Süssmuth R.D., Gruber C.W. // Nat. Rev. Methods Prim. 2023. V. 3. P. 1–21. https://doi.org/10.1038/s43586-023-00205-2
- Yan C.-L., Guan K.-X., Lin H., Feng T., Meng J.-G. // Front. Plant Sci. 2025. V. 16. P. 1506617. https://doi.org/10.3389/fpls.2025.1506617
- Zhang Y.-M., Ye D.-X., Liu Y., Zhang X.-Y., Zhou Y.-L., Zhang L., Yang X.-L. // Adv. Agrochem. 2023. V. 2. P. 58–78. https://doi.org/10.1016/j.aac.2023.01.003
- Zhang Z., Han H., Zhao J., Liu Z., Deng L., Wu L., Niu J., Guo Y., Wang, G., Gou, X., Li C., Li C., Li C.–M. // Mol. Hortic. 2025. V. 5. P. 7. https://doi.org/10.1186/s43897-024-00134-y
- Ruiz C., Nadal A., Montesinos E., Pla M. // Mol. Plant Pathol. 2018. V. 19. P. 418–431. https://doi.org/10.1111/mpp.12534
- Pearce G., Strydom D., Johnson S., Ryan C.A. // Science. 1991. V. 253. P. 895–897. https://doi.org/10.1126/science.253.5022.895
- Matsubayashi Y., Sakagami Y. // Proc. Natl. Acad. Sci. 1996. V. 93. P. 7623–7627. https://doi.org/10.1073/pnas.93.15.7623
- Amano Y., Tsubouchi H., Shinohara H., Ogawa M., Matsubayashi Y. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 18333–18338. https://doi.org/10.1073/pnas.0706403104
- Pearce G., Moura D.S., Stratmann J., Ryan C.A. // Nature. 2001. V. 411. P. 817–820. https://doi.org/10.1038/35081107
- Pearce G., Moura D.S., Stratmann J., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 12843– 12847. https://doi.org/10.1073/pnas.201416998
- Huffaker A., Pearce G., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 10098–10103. https://doi.org/10.1073/pnas.0603727103
- Ito Y., Nakanomyo I., Motose H., Iwamoto K., Sawa S., Dohmae N., Fukuda H. // Science. 2006. V. 313. P. 842– 845. https://doi.org/10.1126/science.1128436
- Stührwohldt N., Bühler E., Sauter M., Schaller A. // J. Exp. Bot. 2021. V. 72. P. 3427–3440. https://doi.org/10.1093/jxb/erab017
- Tost A.S., Kristensen A., Olsen L.I., Axelsen K.B., Fuglsang A.T. // Genes (Basel). 2021. V. 12. P. 218. https://doi.org/10.3390/genes12020218
- Ryan C.A., Pearce G. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 14577–14580. https://doi.org/10.1073/pnas.1934788100
- Pastor V., Sánchez-Bel P., Gamir J., Pozo M.J., Flors V. // Plant Methods. 2018. V. 14. P. 33. https://doi.org/10.1186/s13007-018-0301-z
- Coppola M., Di Lelio I., Romanelli A., Gualtieri L., Molisso D., Ruocco M., Avitabile C., Natale R., Cascone P., Guerrieri E., Pennacchio F., Rao R. // Plants (Basel). 2019. V. 8. P. 395. https://doi.org/10.3390/plants8100395
- Zhang H., Zhang H., Lin J. // New Phytol. 2020. V. 226. P. 1573–1582. https://doi.org/10.1111/nph.16495
- Cirillo V., Molisso D., Aprile A.M., Maggio A., Rao R. // Environ. Exp. Bot. 2022. V. 199. P. 104865. https://doi.org/10.1016/j.envexpbot.2022.104865
- Yan J., Xin P., Cheng S., Chu J. // Plant Commun. 2023. V. 4. P. 100638. https://doi.org/10.1016/j.xplc.2023.100638
- Wang L., Einig E., Almeida-Trapp M., Albert M., Fliegmann J., Mithöfer A., Kalbacher H., Felix G. // Nat. Plants. 2018. V. 4. P. 152–156. https://doi.org/10.1038/s41477-018-0106-0
- Chen Y.L., Fan K.T., Hung S.C., Chen Y.R. // New Phytol. 2020. V. 225. P. 2267–2282.2020. https://doi.org/10.1111/nph.16241
- Huffaker A., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 10732–10736. https://doi.org/10.1073/pnas.0703343104
- Huffaker A., Pearce G., Veyrat N., Erb M., Turlings T.C.J., Sartor R., Shen Z., Briggs S.P., Vaughan M.M., Alborn H.T., Teal P.E.A., Schmelz E.A. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 5707– 5712. https://doi.org/10.1073/pnas.1214668110
- Bartels S., Lori M., Mbengue M., van Verk M., Klauser D., Hander T., Böni R., Robatzek S., Boller T. // J. Exp. Bot. 2013. V. 64. P. 5309–5321. https://doi.org/10.1093/jxb/ert330
- Ruiz C., Nadal A., Foix L., Montesinos L., Montesinos E., Pla M. // BMC Genet. 2018. V. 19. P. 11. https://doi.org/10.1186/s12863-017-0593-4
- Lee M.W., Huffaker A., Crippen D., Robbins R.T., Goggin F.L. // Mol. Plant Pathol. 2017. V. 19. P. 858– 869. https://doi.org/10.1111/mpp.12570
- Zelman A.K., Berkowitz G.A. // Plants. 2023. V. 12. P. 2856. https://doi.org/10.3390/plants12152856
- Pearce G., Yamaguchi Y., Munske G., Ryan C.A. // Peptides. 2010. V. 31. P. 1973–1977. https://doi.org/10.1016/j.peptides.2010.08.012
- Abarca A., Franck C.M., Zipfel C. // Plant Physiol. 2021. V. 187. P. 996–1010. https://doi.org/10.1093/plphys/kiab308
- Fletcher J.C., Brand U., Running M.P., Simon R., Meyerowitz E.M. // Science. 1999. V. 283. P. 1911– 1914. https://doi.org/10.1126/science.283.5409.1911
- Fletcher J.C. // Trends Plant Sci. 2020. V. 25. P. 1005– 1016. https://doi.org/10.1016/j.tplants.2020.04.014
- Cock J.M., McCormick S. // Plant Physiol. 2001. V. 126. P. 939–942. https://doi.org/10.1104/pp.126.3.939
- Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., Sakagami Y. // Science. 2006. V. 313. P. 845–848. https://doi.org/10.1126/science.1128439
- Hagelthorn L., Fletcher J.C. // Front. Plant Sci. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1240342
- Ohyama K., Ogawa M., Matsubayashi Y. // Plant J. 2008. V. 55. P. 152–160. https://doi.org/10.1111/j.1365-313X.2008.03464.x
- Roy S., Griffiths M., Torres-Jerez I., Sanchez B., Antonelli E., Jain D., Krom N., Zhang S., York L.M., Scheible W.-R., Udvardi M. // Front. Plant Sci. 2022. V. 12. P. 793145. https://doi.org/10.3389/fpls.2021.793145
- Skripnikov A.Y., Anikanov N.A., Kazakov V.S., Dolgov S.V., Ziganshin R.K., Govorun V.M., Ivanov V.T. // Russ. J. Bioorg. Chem. 2011. V. 37. P. 108–118. https://doi.org/10.1134/s1068162011010158
- Fesenko I.A., Arapidi G.P., Skripnikov A.Y., Alexeev D.G., Kostryukova E.S., Manolov A.I., Altukhov I.A., Khazigaleeva R.A., Seredina A.V., Kovalchuk S.I., Ziganshin R.H., Zgoda V.G., Novikova S.E., Semashko T.A., Slizhikova D.K., Ptushenko V.V., Gorbachev A.Y., Govorun V.M., Ivanov V.T. // BMC Plant Biol. 2015. V. 15. P. 87. https://doi.org/10.1186/s12870-015-0468-7
- Tian D., Xie Q., Deng Z., Xue J., Li W., Zhang Z., Dai Y., Zheng B., Lu T., De Smet I., Guo Y. // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1000297
- Boschiero C., Dai X., Lundquist P.K., Roy S., de Bang T.C., Zhang S., Zhuang Z., Torres-Jerez I., Udvardi M.K., Scheible W.-R., Zhao P.X. // Plant Physiol. 2020. V. 183. P. 399–413. https://doi.org/10.1104/pp.19.01088
- Chen Y.-L., Lee C.-Y., Cheng K.-T., Chang W.-H., Huang R.-N., Nam H.G., Chen Y.-R. // Plant Cell. 2014. V. 26. P. 4135–4148. https://doi.org/10.1105/tpc.114.131185
- Mohd-Radzman N.A., Binos S., Truong T.T., Imin N., Mariani M., Djordjevic M.A. // J. Exp. Bot. 2015. V. 66. P. 5289–5300. https://doi.org/10.1093/jxb/erv008
- Xu W., Ding G., Yokawa K., Baluška F., Li Q.-F., Liu Y., Shi W., Liang J., Zhang J. // Sci. Rep. 2013. V. 3. P. 1273. https://doi.org/10.1038/srep01273
- Xu L., Li S., Shabala S., Jian T., Zhang W. // Front. Plant Sci. 2019. V. 10. P. 637. https://doi.org/10.3389/fpls.2019.00637
- Whitford R., Fernandez A., Groodt R.D., Ortega E., Hilson P. // Proc. Natl. Acad. Sci. U. S. A. 2008. V. 105. P. 18625–18630. https://doi.org/10.1073/pnas.0809395105
- Matsuzaki Y., Ogawa-Ohnishi M., Mori A., Matsubayashi Y. // Science. 2010. V. 329. P. 1065–1067. https://doi.org/10.1126/science.1191132
- Meng L., Buchanan B.B., Feldman L.J., Luan S. // Proc. Natl. Acad. Sci. U. S. A. 2012. V. 109. P. 1760– 1765. https://doi.org/10.1073/pnas.1119864109
- Whitford R., Fernandez A., Tejos R., Pérez A.C., Kleine-Vehn J., Vanneste S., Drozdzecki A., Leitner J., Abas L., Aerts M., Hoogewijs K., Baster P., Groodt R.D., Lin Y.–C., Storme V., Van de Peer Y., Beeckman T., Madder A., Devreese B., Luschnig C., Friml J., Hilson P. // Dev. Cell. 2012. V. 22. P. 678–685. https://doi.org/10.1016/j.devcel.2012.02.002
- Meng L., Buchanan B.B., Feldman L.J., Luan S. // Mol. Plant. 2012. V. 5. P. 955–957. https://doi.org/10.1093/mp/sss060
- Matsubayashi Y., Takagi L., Sakagami Y. // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 13357–13362. https://doi.org/10.1073/pnas.94.24.13357
- Pearce G., Ryan C.A. // J. Biol. Chem. 2003. V. 278. P. 30044–30050. https://doi.org/10.1074/jbc.M304159200
- Matsubayashi Y. // Annu. Rev. Plant Biol. 2014. V. 65. P. 385–413. https://doi.org/10.1146/annurev-arplant-050312-120122
- Butenko M.A., Patterson S.E., Grini P.E., Stenvik G.-E., Amundsen S.S., Mandal A., Aalen R.B. // Plant Cell. 2003. V. 15. P. 2296–2307. https://doi.org/10.1105/tpc.014365
- Ogawa M., Shinohara H., Sakagami Y., Matsubayashi Y. // Science. 2008. V. 319. P. 294. https://doi.org/10.1126/science.1150083
- Stenvik G.-E., Tandstad N.M., Guo Y., Shi C.-L., Kristiansen W., Holmgren A., Clark S.E., Aalen R.B., Butenko M.A. // Plant Cell. 2008. V. 20. P. 1805– 1817. https://doi.org/10.1105/tpc.108.059139
- Bubici G., Carluccio A.V., Stavolone L., Cillo F. // PLoS One. 2017. V. 12. https://doi.org/10.1371/journal.pone.0171902
- Wu T., Kamiya T., Yumoto H., Sotta N., Katsushi Y., Shigenobu S., Matsubayashi Y., Fujiwara T. // J. Exp. Bot. 2015. V. 66. P. 6889–6900. https://doi.org/10.1093/jxb/erv105
- Kou X., Liu Q., Sun Y., Wang P., Zhang S., Wu J. // Front. Plant Sci. 2020. V. 11. P. 601993. https://doi.org/10.3389/fpls.2020.601993
- Ampomah-Dwamena C., Tomes S., Thrimawithana A.H., Elborough C., Bhargava N., Rebstock R., Sutherland P., Ireland H., Allan A.C., Espley R.V. // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.967143
- Zhang L., Gleason C. // Nat. Plants. 2020. V. 6. P. 625–629. https://doi.org/10.1038/s41477-020-0689-0
- Pearce G., Bhattacharya R., Chen Y.-C. // Plant Signal. Behav. 2008. V. 3. P. 1091–1092. https://doi.org/10.4161/psb.3.12.6907
- Constabel C.P., Yip L., Ryan C.A. // Plant Mol. Biol. 1998. V. 36. P. 55–62. https://doi.org/10.1023/a:1005986004615
- Ohyama K., Shinohara H., Ogawa-Ohnishi M., Matsubayashi Y. // Nat. Chem. Biol. 2009. V. 5. P. 578–580. https://doi.org/10.1038/nchembio.182
- Yamaguchi Y.L., Ishida T., Sawa S. // J. Exp. Bot. 2016. V. 67. P. 4813–4826. https://doi.org/10.1093/jxb/erw208
- Schardon K., Hohl M., Graff L., Pfannstiel J., Schulze W., Stintzi A., Schaller A. // Science. 2016. V. 354. P. 1594–1597. https://doi.org/10.1126/science.aai8550
- Stührwohldt N., Hohl M., Schardon K., Stintzi A., Schaller A. // Commun. Integr. Biol. 2017. V. 11. P. e1395119. https://doi.org/10.1080/19420889.2017.1395119
- Stührwohldt N., Ehinger A., Thellmann K., Schaller A. // Plant Physiol. 2020. V. 184. P. 1573–1584. https://doi.org/10.1104/pp.20.00528
- Pfister A., Barberon M., Alassimone J., Kalmbach L., Lee Y., Vermeer J.E.M., Yamazaki M., Li G., Maurel C., Takano J., Kamiya T., Salt D.E., Roppolo D., Geldner N. // Elife. 2014. V. 3. P. e03115. https://doi.org/10.7554/eLife.03115
- Alassimone J., Fujita S., Doblas V.G., van Dop M., Barberon M., Kalmbach L., Vermeer J.E.M., Rojas- Murcia N., Santuari L., Hardtke C.S., Gelder N. // Nat. Plants. 2016. V. 2. P. 16113. https://doi.org/10.1038/nplants.2016.113
- Doblas V.G., Smakowska-Luzan E., Fujita S., Alassimone J., Barberon M., Madalinski M., Belkhadir Y., Geldner N. // Science. 2017. V. 355. P. 280–284. https://doi.org/10.1126/science.aaj1562
- Nakayama T., Shinohara H., Tanaka M., Baba K., Ogawa-Ohnishi M., Matsubayashi Y. // Science. 2017. V. 355. P. 284–286. https://doi.org/10.1126/science.aai9057
- Lemmon M.A., Schlessinger J. // Cell. 2010. V. 141. P. 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
- Okuda S. // Peptides. 2021. V. 144. P. 170614. https://doi.org/10.1016/j.peptides.2021.170614
- Lease K.A., Walker J.C. // Plant Physiol. 2006. V. 142. P. 831–838. https://doi.org/10.1104/pp.106.086041
- Etchells J.P., Turner S.R. // Development. 2010. V. 137. P. 767–774. https://doi.org/10.1242/dev.044941
- Stahl Y., Wink R.H., Ingram G.C., Simon R. // Curr. Biol. 2009. V. 19. P. 909–914. https://doi.org/10.1016/j.cub.2009.03.060
- Olsson V., Joos L., Zhu S., Gevaert K., Butenko M.A., De Smet I. // Annu. Rev. Plant Biol. 2019. V. 70. P. 153– 186. https://doi.org/10.1146/annurev-arplant-042817-040413
- Scheer J., Ryan C.A. // Plant Cell. 1999. V. 11. P. 1525–1536. https://doi.org/10.1105/tpc.11.8.1525
- Meindl T., Boller T., Felix G. // Plant Cell. 1998. V. 10. P. 1561–1570. https://doi.org/10.1105/tpc.10.9.1561
- Matsubayashi Y., Ogawa M., Morita A., Sakagami Y. // Science. 2002. V. 296. P. 1470–1472. https://doi.org/10.1126/science.1069607
- Shinohara H., Moriyama Y., Ohyama K., Matsubayashi Y. // Plant J. 2012. V. 70. P. 315–326. https://doi.org/10.1111/j.1365-313X.2012.04934.x
- Shinohara H., Mori A., Yasue N., Sumida K., Matsubayashi Y. // Proc. Natl. Acad. Sci. U. S. A. 2016. V. 113. P. 3897–3902. https://doi.org/10.1073/pnas.1522639113
- Stegmann M., Monaghan J., Smakowska-Luzan E., Rovenich H., Lehner A., Holton N., Belkhadir Y., Zipfel C. // Science. 2017. V. 355. P. 287–289. https://doi.org/10.1126/science.aal2541
- Yamaguchi Y., Huffaker A., Bryan A.C., Tax F.E., Ryan C.A. // Plant Cell. 2010. V. 22. P. 508–522. https://doi.org/10.1105/tpc.109.068874
- Mosher S., Seybold H., Rodriguez P., Stahl M., Davies K.A., Dayaratne S., Morillo S.A., Wierzba M., Favery B., Keller H., Tax F.E., Kemmerling B. // Plant J. 2013. V. 73. P. 469–482. https://doi.org/10.1111/tpj.12050
- Tabata R., Sumida K., Yoshii T., Ohyama K., Shinohara H., Matsubayashi Y. // Science. 2014. V. 346. P. 343–346. https://doi.org/10.1126/science.1257800
- Kinoshita A., Nakamura Y., Sasaki E., Kyozuka J., Fukuda H., Sawa S. // Plant Cell Physiol. 2007. V. 48. P. 1821–1825. https://doi.org/10.1093/pcp/pcm154
Supplementary files




