Современные представления об энергетическом балансе и доступности энергии в спорте
- Авторы: Бушманова Е.А.1, Людинина А.Ю.1
-
Учреждения:
- Институт физиологии ФИЦ Коми НЦ УрО РАН
- Выпуск: Том 50, № 6 (2024)
- Страницы: 92-106
- Раздел: ОБЗОРЫ
- URL: https://transsyst.ru/0131-1646/article/view/664106
- DOI: https://doi.org/10.31857/S0131164624060101
- EDN: https://elibrary.ru/AFHEWH
- ID: 664106
Цитировать
Аннотация
Дисбаланс между энергопотреблением и суточным расходом энергии является причиной отрицательного энергетического баланса, а в сочетании с длительными интенсивными физическими нагрузками может привести к развитию низкой доступности энергии (НДЭ). Понятие НДЭ ассоциируется с целым рядом эндокринных, сердечно-сосудистых, воспалительных, желудочно-кишечных и психических изменений, которые были объединены под термином “относительный дефицит энергии в спорте” (Relative Energy Deficiency in Sport, RED-S). Проведенный анализ мировой литературы показал высокую распространенность НДЭ и RED-S на фоне недостаточной осведомленности тренеров и спортсменов о дефиците энергии и его негативных последствиях для здоровья, что актуализирует значимость данной проблемы. Именно поэтому вопросы ранней диагностики, адекватного лечения и профилактики RED-S с учетом специфики вида спорта, пола и возраста имеют большое практическое значение.
Полный текст

Об авторах
Е. А. Бушманова
Институт физиологии ФИЦ Коми НЦ УрО РАН
Автор, ответственный за переписку.
Email: katerinabushmanova@mail.ru
Department of Ecological and Medical Physiology
Россия, Республика Коми, СыктывкарА. Ю. Людинина
Институт физиологии ФИЦ Коми НЦ УрО РАН
Email: salu_06@inbox.ru
Department of Ecological and Medical Physiology
Россия, Республика Коми, СыктывкарСписок литературы
- Mountjoy M., Sundgot-Borgen J., Burke L.M. et al. The IOC consensus statement: Beyond the female athlete triad – Relative energy deficiency in sport (RED-S) // Br. J. Sports Med. 2014. V. 48. № 7. P. 491.
- Kerksick C.M., Wilborn C.D., Roberts M.D. et al. ISSN exercise & sports nutrition review update: research & recommendations // J. Int. Soc. Sports Nutr. 2018. V. 15. № 1. P. 38.
- Jagim A.R., Fields J.B., Magee M. et al. The influence of sport nutrition knowledge on body composition and perceptions of dietary requirements in collegiate athletes // Nutrients. 2021. V. 13. № 7. P. 2239.
- Logue D.M., Madigan S.M., Melin A. et al. Low energy availability in athletes 2020: An updated narrative review of prevalence, risk, within-day energy balance, knowledge and impact on sport performance // Nutrients. 2020. V. 12. № 3. P. 835.
- De Souza M.J., Koltun K.J., Williams N.I. What is the evidence for a Triad-like syndrome in exercising men? // Curr. Opin. Physiol. 2019. V. 10. P. 27.
- Burke L.M., Close G.L., Mooses M. et al. Relative energy deficiency in sport in male athletes: A commentary on its presentation among selected groups of male athletes // Int. J. Sport Nutr. Exerc. Metab. 2018. V. 28. № 4. P. 364.
- Logue D.M., Madigan S.M., Delahunt E. et al. Low energy availability in athletes: A review of prevalence, dietary patterns, physiological health, and sports performance // Sport Med. 2018. V. 48. № 1. P. 73.
- Brunet P., Ambresin A.E., Gojanovic B. What do you know of RED-S? A field study on adolescent coaches' knowledge // Rev. Med. Suisse. 2019. V. 15. № 657. P. 1334.
- Gonzalez J.T., Betts J.A., Thompson D. Carbohydrate availability as a regulator of energy balance with exercise // Exerc. Sport Sci. Rev. 2019. V. 47. № 4. P. 215.
- Taguchi M., Manore M.M. Reexamining the calculations of exercise energy expenditure in the energy availability equation of free-living athletes // Front. Sports Act. Living. 2022. V. 4. P. 885631.
- Esteves de Oliveira F.C., de Mello Cruz A.C., Gonçalves Oliveira C. et al. Energy expenditure of healthy Brazilian adults: a comparison of methods // Nutr. Hosp. 2008. V. 23. № 6. P. 554.
- Levine J.A. Measurement of energy expenditure // Public Health Nutr. 2005. V. 8. № 7A. P. 1123.
- Blasco Redondo R. Resting energy expenditure; assessment methods and applications // Nutr. Hosp. 2015. V. 31. Suppl 3. P. 245.
- Heydenreich J., Kayser B., Schutz Y., Melzer K. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: A systematic review // Sports Med. Open. 2017. V. 3. № 1. P. 8.
- MacKenzie-Shalders K., Kelly J.T., So D. et al. The effect of exercise interventions on resting metabolic rate: A systematic review and meta-analysis // J. Sports Sci. 2020. V. 38. № 14. P. 1635.
- Бушманова Е.А., Людинина А.Ю. Современные подходы к оценке энерготрат и энергопотребления у спортсменов // Вопросы питания. 2023. Т. 92. № 5(549). С. 16.
- Burke L.M., Lundy B., Fahrenholtz I.L., Melin A.K. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes // Int. J. Sport Nutr. Exerc. Metab. 2018. V. 28. № 4. P. 350.
- Siedler M.R., De Souza M.J., Albracht-Schulte K. et al. The influence of energy balance and availability on resting metabolic rate: Implications for assessment and future research directions // Sports Med. 2023. V. 53. № 8. P. 1507.
- Schulz L.O., Alger S., Harper I. et al. Energy expenditure of elite female runners measured by respiratory chamber and doubly labeled water // J. Appl. Physiol. 1992. V. 72. № 1. P. 23.
- Motonaga K., Yoshida S., Yamagami F. et al. Estimation of total daily energy expenditure and its components by monitoring the heart rate of Japanese endurance athletes // J. Nutr. Sci. Vitaminol (Tokyo). 2006. V. 52. № 5. P. 360.
- Herring J.L., Mole P.A., Meredith C.N., Stern J.S. Effect of suspending exercise training on resting metabolic rate in women // Med. Sci. Sports Exerc. 1992. V. 24. № 1. P. 59.
- Hassapidou M.N., Manstrantoni A. Dietary intakes of elite female athletes in Greece // J. Hum. Nutr. Dietetics. 2001. V. 14. № 5. P. 391.
- Hill R.J., Davies P.S. Energy intake and energy expenditure in elite lightweight female rowers // Med. Sci. Sports Exerc. 2002. V. 34. № 11. P. 1823.
- Fudge B.W., Westerterp K.R., Kiplamai F.K. et al. Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition // Br. J. Nutr. 2006. V. 95. № 1. P. 59.
- Sjodin A.M., Andersson A.B., Hogberg J.M., Westerterp K.R. Energy balance in cross-country skiers: a study using doubly labeled water // Med. Sci. Sports Exerc. 1994. V. 26. № 6. P. 720.
- Papadopoulou S.K., Gouvianaki A., Grammatikopoulou M.G. et al. Body composition and dietary intake of elite cross-country skiers members of the greek national team // Asian J. Sports Med. 2012. V. 3. № 4. P. 257.
- Boulay M.R., Serresse O., Almeras N., Tremblay A. Energy expenditure measurement in male cross-country skiers: Comparison of two fieid methods // Med. Sci. Sports Exerc. 1994. V. 26. № 2. P. 248.
- Costa R.J., Gill S.K., Hankey J. et al. Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultramarathon // Br. J. Nutr. 2014. V. 112. № 3. P. 428.
- Bescós R., Rodríguez F.A., Iglesias X. et al. Nutritional behavior of cyclists during a 24-hour team relay race: A field study report // J. Int. Soc. Sports Nutr. 2012. V. 9. № 1. P. 3.
- Armstrong L.E., Casa D.J., Emmanuel H. et al. Nutritional, physiological, and perceptual responses during a summer ultraendurance cycling event // J. Strength Cond. Res. 2012. V. 26. № 2. P. 307.
- Martin M.K., Martin D.T., Collier G.R., Burke L.M. Voluntary food intake by elite female cyclists during training and racing: influence of daily energy expenditure and body composition // Int. J. Sport Nutr. Exerc. Metab. 2002. V. 12. № 3. P. 249.
- Hulton A.T., Lahart I., Williams K.L. et al. Energy expenditure in the Race Across America (RAAM) // Int. J. Sports Med. 2010. V. 31. № 7. P. 463.
- Ousley-Pahnke L., Black D.R., Gretebeck R.J. Dietary intake and energy expenditure of female collegiate swimmers during decreased training prior to competition // J. Am. Diet Assoc. 2001. V. 101. № 3. P. 351.
- Trappe T.A., Gastaldelli A., Jozsi A.C. et al. Energy expenditure of swimmers during high volume training // Med. Sci. Sports Exerc. 1997. V. 29. № 7. P. 950.
- Jones P.J., Leitch C.A. Validation of doubly labeled water for measurement of caloric expenditure in collegiate swimmers // J. Appl. Physiol. 1993. V. 74. № 6. P. 2909.
- Magkos F., Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls // Curr. Opin. Clin. Nutr. Metab. Care. 2003. V. 6. № 5. P. 539.
- Wasserfurth P., Palmowski J., Hahn A., Krüger K. Reasons for and consequences of low energy availability in female and male athletes: Social environment, adaptations, and prevention // Sports Med. Open. 2020. V. 6. № 1. P. 44.
- Hall K.D., Heymsfield S.B., Kemnitz J.W. et al. Energy balance and its components: implications for body weight regulation // Am. J. Clin. Nutr. 2012. V. 95. № 4. P. 989.
- Hill J.O., Wyatt H.R., Peters J.C. The importance of energy balance // Eur. Endocrinol. 2013. V. 9. № 2. P. 111.
- Hankinson A.L., Daviglus M.L., Bouchard C. et al. Maintaining a high physical activity level over 20 years and weight gain // JAMA. 2010. V. 304. № 23. P. 2603.
- Loucks A.B. Energy balance and body composition in sports and exercise // J. Sports Sci. 2004. V. 22. № 1. P. 1.
- Sundgot-Borgen J., Meyer N.L., Lohman T.G. et al. How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission // Br. J. Sports Med. 2013. V. 47. № 16. P. 1012.
- Stellingwerff T., Boit M.K., Res P.T. Nutritional strategies to optimize training and racing in middle-distance athletes // J. Sports Sci. 2007. V. 25. Suppl 1. P. S17.
- Soares M.J., Müller M.J. Resting energy expenditure and body composition: critical aspects for clinical nutrition // Eur. J. Clin. Nutr. 2018. V. 72. № 9. P. 1208.
- Nunes C.L., Jesus F., Francisco R. et al. Adaptive thermogenesis after moderate weight loss: Magnitude and methodological issues // Eur. J. Nutr. 2021. V. 61. № 3. P. 1405.
- Egan A.M., Collins A.L. Dynamic changes in energy expenditure in response to underfeeding: a review // Proc. Nutr. Soc. 2022. V. 81. № 2. P. 199.
- Muller M.J., Enderle J., Bosy-Westphal A. Changes in energy expenditure with weight gain and weight loss in humans // Curr. Obes. Rep. 2016. V. 5. № 4. P. 413.
- Siedler M.R., De Souza M.J., Albracht-Schulte K. et al. The influence of energy balance and availability on resting metabolic rate: Implications for assessment and future research directions // Sports Med. 2023. V. 53. № 8. P. 1507.
- Westerterp K.R. Metabolic adaptations to over- and underfeeding— still a matter of debate? // Eur. J. Clin. Nutr. 2013. V. 67. № 5. P. 443.
- Martins C., Roekenes J., Salamati S. et al. Metabolic adaptation is an illusion, only present when participants are in negative energy balance // Am. J. Clin. Nutr. 2020. V. 112. № 5. P. 1212.
- Martin A., Fox D., Murphy C.A. et al. Tissue losses and metabolic adaptations both contribute to the reduction in resting metabolic rate following weight loss // Int. J. Obes (Lond). 2022. V. 46. № 6. P. 1168.
- Areta J.L., Taylor H.L., Koehler K. Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males // Eur. J. Appl. Physiol. 2021. V. 121. № 1. P. 1.
- Woods A.L., Rice A.J., Garvican-Lewis L.A. et al. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists // PLoS One. 2018. V. 13. № 2. P. e0191644.
- Edinburgh R.M., Hengist A., Smith H.A. et al. Skipping breakfast before exercise creates a more negative 24-hour energy balance: A randomized controlled trial in healthy physically active young men // J. Nutr. 2019. V. 149. № 8. P. 1326.
- Beaulieu K., Hopkins M., Long C. et al. High habitual physical activity improves acute energy compensation in nonobese adults // Med. Sci. Sport Exerc. 2017. V. 49. № 11. P. 2268.
- Lodge M.T., Ward-Ritacco C.L., Melanson K.J. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in Female Endurance Athletes: A narrative review // Nutrients. 2023. V. 15. № 20. P. 4457.
- Loucks A.B., Kiens B., Wright H.H. Energy availability in athletes // J. Sports Sci. 2011. V. 29. Suppl 1. P. S7.
- Mountjoy M., Sundgot-Borgen J.K., Burke L.M. et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update // Br. J. Sports Med. 2018. V. 52. № 11. P. 687.
- Sim A., Burns S.F. Review: questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes // J. Eat Disord. 2021. V. 9. № 1. P. 41.
- Desbrow B., Slater G., Cox G.R. Sports nutrition for the recreational athlete // Aust. J. Gen Pract. 2020. V. 49. № 1–2. P. 17.
- Jurov I., Keay N., Hadžić V. et al. Relationship between energy availability, energy conservation and cognitive restraint with performance measures in male endurance athletes // J. Int. Soc. Sports Nutr. 2021. V. 18. № 1. P. 24.
- Loucks A.B., Thuma J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women // J. Clin. Endocrinol. Metab. 2003. V. 88. № 1. P. 297.
- Koehler K., Hoerner N.R., Gibbs J.C. et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones // J. Sports Sci. 2016. V. 34. № 20. P. 1921.
- Viner R.T., Harris M., Berning J.R., Meyer N.L. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density // Int. J. Sport Nutr. Exerc. Metab. 2015. V. 25. № 6. P. 594.
- Elliott-Sale K.J., Tenforde A.S., Parziale A.L. et al. Endocrine effects of relative energy deficiency in sport // Int. J. Sport Nutr. Exerc. Metab. 2018. V. 28. № 4. P. 335.
- Papageorgiou M., Elliott-Sale K.J., Parsons A. et al. Effects of reduced energy availability on bone metabolism in women and men // Bone. 2017. V. 105. P. 191.
- Fazeli P.K., Klibanski A. Determinants of GH resistance in malnutrition // J. Endocrinol. 2014. V. 220. № 3. P. R57.
- Murphy C., Koehler K. Caloric restriction induces anabolic resistance to resistance exercise // Eur. J. Appl. Physiol. 2020. V. 120. № 5. P. 1155.
- Stellingwerff T., Maughan R.J., Burke L.M. Nutrition for power sports: middledistance running, track cycling, rowing, canoeing/kayaking, and swimming // J. Sports Sci. 2011. V. 29. Suppl 1. P. S79.
- Nattiv A., Loucks A.B., Manore M.M. et al. American College of Sports Medicine position stand. The female athlete triad // Med. Sci. Sports Exerc. 2007. V. 39. № 10. P. 1867.
- Hooper D.R., Tenforde A.S., Hackney A.C. Treating exercise-associated low testosterone and its related symptoms // Phys. Sportsmed. 2018. V. 46. № 4. P. 427.
- Schofield K.L., Thorpe H., Sims S.T. Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population // Exp. Physiol. 2019. V. 104. № 4. P. 469.
- Strock N.-C.A., Koltun K.J., Southmayd E.A. et al. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women // Int. J. Sport Nutr. Exerc. Metab. 2020. V. 30. № 1. P. 14.
- Sterringer T., Larson-Meyer D.E. RMR ratio as a surrogate marker for low energy availability // Curr. Nutr. Rep. 2022. V. 11. № 2. P. 263.
Дополнительные файлы
