The effects of the early pro-inflammatory stress on reconsolidation and extinction of fear memory in male Wistar rats
- Autores: Grigoryan G.A.1, Pavlova I.V.1, Broshevitskaya N.D.1, Shvadchenko A.A.1
-
Afiliações:
- Institute of Higher Nervous Activity and Neurophysiology RAS
- Edição: Volume 75, Nº 4 (2025)
- Páginas: 483-497
- Seção: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://transsyst.ru/0044-4677/article/view/687581
- DOI: https://doi.org/10.31857/S0044467725040086
- ID: 687581
Citar
Resumo
The influence of neuroinflammation on the reconsolidation of fear memory is poorly studied, using only acute but not the remote effects of intoxication. In the present work, we investigated the influence of remote pro-inflammatory lipopolysaccharide (LPS) stress on the reconsolidation and extinction of fear memory in adult male Wistar rats. On the 3rd and 5th PND, during the critical period of postnatal ontogenesis, the rats received subcutaneous injections of LPS (50 μg/kg) or saline. At 120 PND, the rats acquired a fear conditioning by the use of three pairings of tone presentations and shock. Twenty-four hours after training, one group of rats was reactivated in the same context and by a single tone presentation (Re+), while the other group remained in the home cages, (Re‒). A day later, in retention test 1, the freezing reaction was measured in all groups. After test 1, the groups underwent extinction for two days with 10 tones on each day, followed by retention test 2. In test 1, the contextual memory of the Re+ vs. Re‒ saline groups were impaired as opposed to cue memory. The early LPS stress equalized the level of freezing of both Re+ and Re‒ groups, indicating that early neuroinflammation impairs the updating of the contextual fear memory. The differences in the level of freezing between the Re+ and Re‒ groups persisted during extinction and in test 2. The extinction of the LPS group was slower than that in the SAL group. Thus, remote neuroinflammation impairs the process of memory updating and extinction of conditioned fear.
Palavras-chave
Texto integral

Sobre autores
Grigory Grigoryan
Institute of Higher Nervous Activity and Neurophysiology RAS
Autor responsável pela correspondência
Email: grigorygrigoryan@hotmail.com
Rússia, Moscow
Irina Pavlova
Institute of Higher Nervous Activity and Neurophysiology RAS
Email: grigorygrigoryan@hotmail.com
Rússia, Moscow
Nadezda Broshevitskaya
Institute of Higher Nervous Activity and Neurophysiology RAS
Email: grigorygrigoryan@hotmail.com
Rússia, Moscow
Anastasia Shvadchenko
Institute of Higher Nervous Activity and Neurophysiology RAS
Email: grigorygrigoryan@hotmail.com
Rússia, Moscow
Bibliografia
- Benmhammed H., Lamtai M., Mesfoui A., Nassiri A., Mouden S., Bikri S., Hessni A.El. Effects of lipopolysaccharide administration at different postnatal periods on behavioral and biochemical assessments in Wistar rats. Neuroscience and Behavioral Physiology. 2024. 54: 357–373.
- Broshevitskaya N.D., Pavlova I.V., Zaichenko M.I., Onufriev M.V., Moiseeva Yu. V., Grigoryan G.A.The sex differences in defensive behavior of adult rats in response to early neuroinflammatory stress. Zh. Vyssh. Nerv. Deiat. Im I.P. Pavlova. 2020. 70: 259–276.
- Broshevitskaya N., Pavlova I., Zaichenko M., Gruzdeva V., Grigoryan G.A. Effects of early pro-inflammatory stress on anxiety and depression-like behavior in rats of different ages. Neurosci. and Behav. Physiol. 2021. 51: 390–401.
- Custódio C.S., Mello B.S.F., Filho A.J.M.C., de Carvalho Lima C.N., Cordeiro R.C., Miyajima F. et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol. Neurobiol. 2018. 55: 3775–3788.
- Dinel A.L., André C., Aubert A., Ferreira G., Layé S., Castanon N. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome. Psychoneuroendocrinology. 2014. 40: 48–59.
- Dinel A.-L., Joffre C., Trifilieff P., Aubert A., Foury A., Le Ruyet P., Layé S. Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood. J. Neuroinflammation. 2014. 11: 155.
- Doenni V.M., Song C.M., Hill M.N., Pittman Q.J. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav. Immun. 2017. 63: 176–185.
- Ferrara N.C., Kwapis J.L., Trask S. Memory retrieval, reconsolidation, and extinction: Exploring the boundary conditions of post-conditioning cue exposure. Front. Synaptic Neurosci. 2023. 15:1146665.
- Ferrer Monti R.I., Giachero M., Alfei J.M., Bueno A.M., Cuadra G., Molina V.A. An appetitive experience after fear memory destabilization attenuates fear retention: involvement GluN2B-NMDA receptors in the basolateral amygdala complex. Learn Mem. 2016. 23: 465–478.
- Fidilio A., Grasso M., Caruso G., Musso N., Begni V., Privitera A., Torrisi S.A., Campolongo P., Schiavone S., Tascedda F., Leggio G.M., Drago F., Riva M.A., Caraci F. Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway. Front. Pharmacol., 2022. 13:1075746.
- Fukushima H., Zhang Y., Kida S. Active transition of fear memory phase from reconsolidation to extinction through ERK-mediated prevention of reconsolidation. J. Neurosci. 2021. 41: 1288–1300.
- Grigoryan G.A. The sex differences in behavior and biochemical markers in animals in response to the neuroinflammatory stress. The Proceedings of Physiological Sciences. 2020. 51: 18–32.
- Haubrich J., Crestani A.P., Cassini L.F., Santana F., Sierra R.O., Alvares Lde O. et al. Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacol. 2015. 40: 315–326.
- Herry C., Ciocchi S., Senn V., Demmou L., Müller C., Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008. 454: 600–606.
- Jasnow A.M., Ehrlich D.E., Choi D.C., Dabrowska J., Bowers M.E., McCullough K.M., Rainnie D.G., Ressler K.J. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J. Neurosci. 2013. 33(25): 10396–404.
- Kapoor M., Chinnathambi S. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized Tau perspective. J. Neuroinflammation. 2023.20(1):72.
- Kessler R.C., Petukhova M., Sampson N.A., Zaslavsky A.M., Wittchen H-U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res. 2012. 21:169-184.
- Kida S. Interaction between reconsolidation and extinction of fear memory Brain Res. Bull. 2023. 195: 141–144.
- Kindt M., Soeter M., Vervliet B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat. Neurosci. 2009. 12: 256–258.
- Kranjac D., McLinden K.A., Deodati L.E., Papini M.R., Chumley M.J., Boehm G.W. Peripheral bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in mice. Brain Behav. Immun. 2012. 26: 109–121.
- Kvichansky A.A., Tret’yakova L.V., Volobueva M.N., Manolova A.O., Stepanichev M.Y., Onufriev M.V., Moiseeva Y.V., Lazareva N.A., Bolshakov A.P., Gulyaeva N.V. Neonatal proinflammatory stress and expression of neuroinflammation-associated genes in the rat hippocampus. Biochemistry (Mosc). 2021. 86: 693–703.
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001. 25: 402–408.
- Machado I., González P., Schiöth H.B., Lasaga M., Scimonelli T.N. α-Melanocyte-stimulating hormone (α-MSH) reverses impairment of memory reconsolidation induced by interleukin-1beta (IL-1 beta) hippocampal infusions. Peptides. 2010. 31: 2141–2144.
- Machado I., Gonzalez P.V., Vilcaes A., Carniglia L., Schiöth H.B., Lasaga M. et al. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects. Brain Behav. Immun. 2015. 46: 137–146.
- Machado I., Schiöth H.B., Lasaga M., Scimonelli T. IL-1β reduces GluA1 phosphorylation and its surface expression during memory reconsolidation and α-melanocyte-stimulating hormone can modulate these effects. Neuropharmacology. 2018. 128: 314–323.
- Mamiya N., Fukushima H., Suzuki A., Matsuyama Z., Homma S., Frankland P.W., Kida S. Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J. Neurosci. 2009. 29: 402–413.
- Milekic M.H., Alberini C.M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron. 2002. 36: 521–525.
- Monfils M.H., Cowansage K.K., Klann E., LeDoux J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science. 2009. 324: 951–955.
- Nader K., Schafe G.E., Le Doux J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000a. 406: 722–726.
- Nader K., Schafe G.E., Le Doux J.E. The labile nature of consolidation theory. Nat. Rev. Neurosci. 2000b. 1: 216–219.
- Pavlova I.V., Broshevitskaya N.D., Zaichenko M.I., Grigoryan G.A. The influence of long-term housing in enriched environment on behavior of normal rats and subjected to early pro-inflammatory lipopolysaccharide stress. Brain Behavior and Immunity – Health. 2023. 100639.
- Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 2005. Elsevier Academic Press., 210 p.
- Przybyslawski J., Roulle P., Sara S.J. Attenuation of emotional and non-emotional memories after their reactivation: role of beta adrenergic receptors. J. Neurosci. 1999. 19: 6623–6628.
- Quiñones M.M., Maldonado L., Velazquez B., Porter J.T. Candesartan ameliorates impaired fear extinction induced by innate immune activation. Brain Behav. Immun. 2016. 52: 169–177.
- Quirk G.J., Paré D., Richardson R., Herry C., Monfils M.H., Schiller D. et al. Erasing fear memories with extinction training. J. Neurosci. 2010. 30: 14993–14997.
- Rao-Ruiz P., Rotaru D.C., van der Loo R.J., Mansvelder H.D., Stiedl O., Smit A.B. et al. Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci. 2011. 14: 1302–1308.
- Rong J., Yang Y., Liang M., Zhong H., Li Y., Zhu Y., Sha S., Chen L., Zhou R. Neonatal inflammation increases hippocampal KCC2 expression through methylation-mediated TGF-β1 downregulation leading to impaired hippocampal cognitive function and synaptic plasticity in adult mice. J. Neuroinflammation. 2023. 20(1):15.
- Schiller D., Kanen J.W., LeDoux J.E., Monfils M.H., Phelps E.A. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proc. Natl. Acad. Sci. U S A. 2013. 110: 20040-20045.
- Schiller D., Monfils M.H., Raio C.M., Johnson D.C., Ledoux J.E., Phelp E.A. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature. 2010. 463: 49–53.
- Shu H., Wang M., Song M., Sun Y., Shen X., Zhang J., Jin X. Acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through AMPK activation and CRTC1 upregulation in hippocampus. Int. J. Neuropsychopharmacol. 2020. 23: 687–699.
- Stepanichev M.Yu., Dygalo N.N., Grigoryan G.A., Shishkina G., Gulyaeva N.V. Rodents model of depression: neurotrophic and neuroinflammatory biomarkers. BioMed. Research International. 2014. 1–20.
- Su C., Miao J., Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res. Bull. 2023. 205:110820.
- Suzuki A., Josselyn S.A., Frankland P.W., Masushige S., Silva A.J., Kida S. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 2004. 20: 4787–4795.
- Takahashi S., Fukushima H., Yu Z., Tomita H., Kida S. Tumor necrosis factor α negatively regulates the retrieval and reconsolidation of hippocampus-dependent memory. Brain Behav. Immun. 2021. 94: 79–88.
- Tishkina A., Stepanichev M., Kudryashova I., Freiman S., Onufriev M., Lazareva N. et al. Neonatal proinflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response. Behav. Brain Res. 2016. 304: 1–10.
- Turrin N.P., Gayle D., Ilyin S.E., Flynn M.C., Langhans W., Schwartz G.J., Plata-Salamán C.R. Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide Brain Res. Bull. 2001. 54: 443–453.
- Walker A.K., Nakamura T., Hodgson D.M. Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats. Stress. 2010. 13: 506–515.
- Wang Y., Ruan W., Mi J., Xu J., Wang H., Cao Z. et al. Balasubramide derivative 3C modulates microglia activation via CaMKKβ-dependent AMPK/PGC1α pathway in neuroinflammatory conditions. Brain Behav. Immun. 2018. 67: 101–117.
- Wang X., Xue G.X., Liu W.C., Shu H., Wang M., Sun Y. et al. Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell. 2017. 16: 414–421.
- Xie Y., Chen X., Li Y., Chen S., Liu S., Yu Z., Wang W. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways, J. Neuroinflammation. 2022. 19:194.
- Xin W., Pan Y., Wei W., Gerner S.T., Huber S., Juenemann M., Butz M., Bähr M., Huttner H.B., Doeppner T.R. TGF-β1 Decreases Microglia-Mediated Neuroinflammation and Lipid Droplet Accumulation in an In Vitro Stroke Model. Int J. Mol. Sci. 2023. 24(24): 17329.
- Zaichenko M.I., Sharkova A.V., Pavlova I.V., Grigoryan G.A. Sex differences in the influences of early proinflammatory stress on learning and memory in adult rats in the Morris water maze. Neuroscience and Behavioral Physiology. 2022. 52: 1258–1269.
- Zhang Y., Xu N., Ding Y., Zhang Y., Li Q., Flores J. et al. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav. Immun. 2018. 70: 179–193.
- Zhou X., Cao Y., Ao G., Hu L., Liu H., Wu J. et al. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid. Redox Signal. 2014. 21: 1741–1758.
- Zubareva O.E., Postnikova T.Y., Grifluk A.V., Schwarz A.P., Smolensky I.V., Karepanov A.A. et al. Exposure to bacterial lipopolysaccharide in early life affects the expression of ionotropic glutamate receptor genes and is accompanied by disturbances in long-term potentiation and cognitive functions in young rats. Brain Behav. Immun. 2020. 90: 3–15.
Arquivos suplementares
