STUDY OF RESONANCE PROPERTIES OF PAIRED NANOPARTICLES WITH MESOSCOPIC BOUNDARY CONDITIONS BY THE DISCRETE SOURCE METHOD

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The discrete source method was adapted to calculate the field intensity in a nanometer gap of a pair of plasmonic nanoparticles taking into account quantum effects described by mesoscopic boundary conditions with Feibelman parameters. Based on the computational experiment, it was found that for particles made of noble metals, taking into account the quantum effect leads to blue shift of the plasmon resonance and a damping its amplitude. In the case of an alkali metal, taking into account the quantum effect leads to red shift of the plasmon resonance, and when the gap is reduced to 1-2 nm, an enhancement of the intensity in the gap is observed. Analysis of the intensity distribution over the particle surface made it possible to determine that its highest values are achieved at the ends of the particles, with the absolute maximum observed at the ends facing inside the gap. In addition, it was found that the field intensity along the particle surface can vary by four orders of magnitude over a length of only 12 nm, which is only 1.5% of the wavelength of external excitation.

Sobre autores

Yu. Eremin

Lomonosov Moscow State University

Email: eremin@cs.msu.ru
Moscow, Russia

V. Lopushenko

Lomonosov Moscow State University

Email: lopusink@cs.msu.ru
Moscow, Russia

Bibliografia

  1. Jeong H.H., Adams M.C., Gunther J.P., et al. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers // ACS Nano. 2019. V. 13. P. 11453–11459.
  2. Bauman S.J., Darweesh A.A., Furr M., et al. Tunable SERS Enhancement via Sub-Nanometer Gap Metasurfaces // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 15541–15548.
  3. Jin H., Cai Y., Song C., et al. Advances in single-molecule surface-enhanced Raman spectroscopy (SERS) for biosensing // Vibrational Spectroscopy. 2025. V. 138. 103784.
  4. Yamamoto T., Yamane H., Yokoshi N., et al. Optical imaging of a single molecule with subnanometer resolution by photoinduced force microscopy // ACS Nano. 2024. V. 18. № 2. P. 1724–1732.
  5. Nan L., Girdalez-Martinez J., Stefancu A., et al. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae // Nano Lett. 2023. V. 23. № 7. P. 2883–2889.
  6. Singh S., Kumar V., Dhanjal D.S., et al. Biological Biosensors for Monitoring and Diagnosis/ In Microbial Biotechnology: Basic Research and Applications. 2020. P. 317–335.
  7. Zheng Y., Song X., Fredj Z., et al. Challenges and perspectives of multi-virus biosensing techniques: a review // Anal. Chim. Acta. 2023. V. 1244. № 4. 340860.
  8. Mortensen N.A. Mesoscopic electrodynamics at metal surfaces (Review) // Nanophotonics. 2021. V. 10. № 10. P. 2563–2616.
  9. Stamatopoulou P.E., Tserkezis C. Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited] // Optical Materials Express. 2022. V. 12. № 5. P. 1869–1893.
  10. Baghranyan H.M., Ciraci C. Fluorescence Quenching in Plasmonic Dimers Due to Electron Tunneling // Nanophotonics. 2022. V. 11. P. 2473–2482.
  11. David C., Garcia de Abajo F.J. Spatial Nonlocality in the Optical Response of Metal Nanoparticles // J. Phys. Chem. C. 2011. V. 15. P. 19470–19475.
  12. Mortensen N.A., Raza S., Wubs M., et al. A generalized non-local optical response theory for plasmonic nanostructures // Nat. Commun. 2014. V. 5. 3809.
  13. Babaze A., Ogando E., Stamatopoulou P.E., et al. Quantum Surface Effects in the Electromagnetic Coupling between a Quantum Emitter and a Plasmonic Nanoantenna: Time-Dependent Density Functional Theory vs. Semiclassical Feibelman Approach // Opt. Express. 2022. V. 30. 21159.
  14. Tserkezis C., Yan W., Hsieh W., et al. On the Origin of Nonlocal Damping in Plasmonic Monomers and Dimers // Int. J. Mod. Phys. B. 2017. V. 31. 1740005.
  15. Baghramyan H., Sala F.D., Ciraci C. Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics // Phys. Rev. X. 2024. V. 11. L011049.
  16. Zhou Q., Zhang P., Chen X. Quasinormal mode theory for nanoscale electromagnetism informed by quantum surface response // Phys. Rev. B. 2022. V. 105. № 12. L125419.
  17. Yang Y., Zhu D., Yan W., et al. A general theoretical and experimental framework for nanoscale electromagnetism // Nature. 2019. V. 576. Р. 248–252.
  18. Echarri R.A., Goncalves P.A.D., Tserkezis C., et al. Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets // Optica. 2021. V. 8. № 5. Р. 710.
  19. Khalid M., Morandi O., Mallet E., et al. Influence of the Electron Spill-out and Nonlocality on Gap Plasmons in the Limit of Vanishing Gaps // Phys. Rev. B, 2021. V. 104. L155435.
  20. Epемин Ю.А., Свечников А.Г. Кавзликлассические модели квантовой наноплазмоники на основе метода Дискретных источников (обзор) // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 4. С. 34–62.
  21. Epемин Ю.А., Лопушенко В.В. Анализ влияния квантовых эффектов на оптические характеристики плазмонных наночастиц методом дискретных источников// Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 11. С. 1911–1921.
  22. Epемин Ю.А., Лопушенко В.В. Сравнительный анализ влияния поверхностных квантовых эффектов на оптические характеристики наночастиц щелочных и благородных металлов // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 7. С. 207–215.
  23. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М.: Мир, 1987.
  24. Raza S., Bozhevolnyi S.I., Wubs M., Mortensen N.A. Nonlocal optical response in metallic nanostructures. Topical Review // J. Phys. Condens. Matter. 2015. V. 27. № 18. Р. 183204.
  25. Zhang H., Huang C. Optical response and spill-out effects of metal nanostructures with arbitrary shape // J. Opt. Soc. Am. B. 2021. V. 38. № 11. Р. 3285–3291.
  26. Bundgaard I.J., Hansen C.N., Stamatopoulou P.E., Tserkezis C. Quantum-informed plasmonics for strong coupling: the role of electron spill-out // JOSA B. 2024. V. 41. № 5. Р. 1144–1152.
  27. Polyanskiy M.N.. Refractiveindex.info database of optical constants // Scientific Data. 2024. V. 11. Art. 94. https://refractiveindex.info.
  28. Eriksen M.H., Tserkezis C., Mortensen N.A., Cox J.D. Nonlocal effects in plasmon-emitter interactions // Nanophotonics. 2024. V. 13. № 15. Р. 2741–2751.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025