Моделирование распространения динамических возмущений, в пористых средах сеточно-характеристическим методом с явным выделением неоднородностей
- Авторы: Митьковец И.А.1, Хохлов Н.И.1
-
Учреждения:
- МФТИ (НИУ)
- Выпуск: Том 63, № 10 (2023)
- Страницы: 1706-1720
- Раздел: МАТЕМАТИЧЕСКАЯ ФИЗИКА
- URL: https://transsyst.ru/0044-4669/article/view/664973
- DOI: https://doi.org/10.31857/S0044466923100125
- EDN: https://elibrary.ru/WHKIAY
- ID: 664973
Цитировать
Аннотация
Рассматривается вопрос численного моделирования распространения волновых возмущений в гетерогенных средах с наличием пористых включений, а также вопрос явного выделения пористых неоднородностей. В качестве подхода для явного выделения неоднородностей предложен метод наложенных сеток. Для численного решения возникающих систем дифференциальных уравнений в частных производных применяется сеточно-характеристический метод. Рассмотрены особенности предложенного метода, проведена верификация предложенных алгоритмов, приводится серия тестовых расчетов. Библ. 48. Фиг. 9.
Об авторах
И. А. Митьковец
МФТИ (НИУ)
Email: khokhlov.ni@mipt.ru
Россия, 141701, М.о., Долгопрудный, Институтский пер., 9
Н. И. Хохлов
МФТИ (НИУ)
Автор, ответственный за переписку.
Email: khokhlov.ni@mipt.ru
Россия, 141701, М.о., Долгопрудный, Институтский пер., 9
Список литературы
- Qi Yingkai, Chen Xuehua, Zhao Qingwei, Luo Xin, Feng Chunqiang. Seismic wave modeling of fluid-saturated fractured porous rock: Including fluid pressure diffusion effects of discrete distributed large-scale fractures // EGUsphere. 2023. № 1. P. 1–26.
- Liu Jiong, Wei Xiu Cheng, Ji Yu Xin, Chen Tian Sheng, Liu Chun Yuan, Zhang Chun Tao, Dai Ming Gang. An analysis of seismic scattering attenuation in a random elastic medium // Appl. Geophys. 2011. V. 8. № 12. P. 344–354.
- Wei Yijun, Ba Jing, Carcione J.M. Stress effects on wave velocities of rocks: Contribution of crack closure, squirt flow and acoustoelasticity // J. Geophys. Res.: Solid Earth. 2022. V. 127. № 10. P. 2022JB025253.
- Gassmann F. On elasticity of porous media // Classics of Elastic Wave Theory. 2007. № 1. P. 389–408.
- Berryman J.G. Origin of gassmann’s equations // Geophysics. 1999. V. 64. P. 1627–1629.
- Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range // J. Acoustical Soc. Am. 1956. V. 28. № 6. P. 179.
- Dvorkin J., Nur A. Dynamic poroelasticity: a unified model with the squirt and the biot mechanisms // Geophysics. 1993. V. 58. P. 524–533.
- Dvorkin J., Nolen-Hoeksema R., Nur A. The squirt-flow mechanism: macroscopic description // Geophysics. 1994. V. 59. P. 428–438.
- Dvorkin J., Mavko G., Nur A. Squirt flow in fully saturated rocks // Geophysics. 1995. V. 60. P. 97–107.
- Yang Dinghui, Zhang Zhongjie. Effects of the biot and the squirt-flow coupling interaction on anisotropic elastic waves // Chinese Sci. Bull. 2000. V. 45. P. 2130–2138.
- Pride S.R., Berryman J.G., Harris J.M. Seismic attenuation due to wave-induced flow // J. Geophys. Res.: Solid Earth. 2004. № 1. P. 109.
- Müller T.M., Toms-Stewart J., Wenzlau F. Velocity-saturation relation for partially saturated rocks with fractal pore fluid distribution // Geophys. Res. Lett. 2008. V. 35. № 5. P. 9306.
- Huang Xingguo, Greenhalgh Stewart, Han Li, Liu Xu. Generalized effective biot theory and seismic wave propagation in anisotropic, poroviscoelastic media // J. Geophys. Res.: Solid Earth. 2022. V. 127. № 3. P. 2021JB023590.
- Jing B.A., Carcione J.M., Hong Cao, Qi-Zhen Du, Zhen-Yu Yuan, Ming-Hui Lu. Velocity dispersion and attenuation of p waves in partially-saturated rocks: Wave propagation equations in double-porosity medium // Chinese J. Geophys. 2012. V. 55. № 1. P. 219–231.
- Amalokwu K., Best A.I., Sothcott J., Chapman M., Minshull T., Li X.Y. Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures // Geophys. J. Inter. 2014.V. 197. № 5. P. 943–947.
- Sun Weitao, Ba Jing, Müller T.M., Carcione J.M., Cao Hong. Comparison of p-wave attenuation models of wave-induced flow // Geophys. Prospect. 2015. V. 63. № 3. P. 378–390.
- Kachanov M. Elastic solids with many cracks and related problems // Adv. Appl. Mech. 1993. V. 30. P. 259–445.
- Gu’eguen Y., Sarout J. Crack-induced anisotropy in crustal rocks: Predicted dry and fluid-saturated thomsen’s parameters // Physics of the Earth and Planetary Interiors. 2009. V. 172. P. 116–124.
- Gu’eguen Y., Sarout J. Characteristics of anisotropy and dispersion in cracked medium // Tectonophysics. 2011. V. 503. № 4. P. 165–172.
- Dorovsky N.V. Continual theory of filtration // Sov. Geology and Geophysics. 1989. P. 34–39.
- Blokhin A.M., Dorovskii V.N. Mathematical modelling in the theory of multivelocity continuum. 1995. P. 183.
- Dorovsky V.N., Perepechko Yu.V., Fedorov A.I. Stoneley waves in the biot–johnson and continuum filtration theories // Russian Geology and Geophys. 2012. V. 53. № 5. P. 475–483.
- Guo Zhiqi, Qin Xiaoying, Zhang Yiming, Niu Cong, Wang Di, Ling Yun. Numerical investigation of the effect of heterogeneous pore structures on elastic properties of tight gas sandstones // Frontiers in Earth Science. 2021. V. 9. № 4. P. 219.
- Li Tianyang, Wang Zizhen, Yu Nian, Wang Ruihe, Wang Yuzhong. Numerical study of pore structure effects on acoustic logging data in the borehole environment. 2020. V. 28. № 5. https://doi.org/10.1142/S0218348X20500498
- Ozotta O., Saberi M.R., Kolawole O., Malki M.L., Rasouli V., Pu Hui. Pore morphology effect on elastic and fluid flow properties in bakken formation using rock physics modeling // Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2022. V. 8. № 12. P. 1–19.
- Aney Sh., Rege A.The effect of pore sizes on the elastic behaviour of open-porous cellular materials // Math. and Mech. of Solids. 2022. № 10.
- Khokhlov N., Favorskaya A., Stetsyuk V., Mitskovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // J. Comput. Phys. 2021. V. 446. P. 110637.
- Khokhlov N.I., Favorskaya A., Furgailo V. Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures // Minerals. 2022. V. 12. № 12. P. 1597.
- Mitskovets I., Stetsyuk V., Khokhlov N. Novel approach for modeling curved topography using overset grids and grid-characteristic method // European Association of Geoscientists Engineers 2020. № 12. P. 1–5.
- Favorskaya A.V., Zhdanov M.S., Khokhlov N.I., Petrov I.B. Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method // Geophys. Prospect. 2018. V. 66. № 10. P. 1485–1502.
- Magomedov K.M., Kholodov A.S. The construction of difference schemes for hyperbolic equations based on characteristic relations // USSR Comput. Math. and Math. Phys. 1969. V. 9. № 2. P. 158–176.
- Korotin P.N., Petrov I.B., Pirogov V.B., Kholodov A.S. On a numerical solution of related problems of supersonic flow over deformable shells of finite thickness // USSR Comput. Math. and Math. Phys. 1987. V. 27. № 4. P. 181–188.
- Petrov I.E., Kholodov A.S. Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method // USSR Comput. Math. and Math. Phys. 1984. V. 24. № 3. P. 61–73.
- Petrov I.B., Tormasov A.G., Kholodov A.S. On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid // USSR Comput. Math. and Math. Phys. 1990. V. 30. № 4. P. 191–196.
- Kvasov I.E., Pankratov S.A., Petrov I.B. Numerical simulation of seismic responses in multilayer geologic media by the grid-characteristic method // Math. Model. Comput. Simulat. 2011. V. 3. № 2. P. 196–204.
- Muratov M.V., Petrov I.B. Estimation of wave responses from subvertical macrofracture systems using a grid characteristic method // Math. Model. Comput. Simulat. 2013. V. 5. № 5. P. 479–491.
- Petrov I.B., Khokhlov N.I. Modeling 3D seismic problems using high-performance computing systems // Math. Model. Comput. Simulat. 2014. V. 6. № 4. P. 342–350.
- Aki Keiiti, Richards P.G. Quantitative seismology, 2nd ed. // Quse. 2022. V. 68. P. 1546–1546.
- LeVeque R.J. Finite volume methods for hyperbolic problems // Finite Volume Methods for Hyperbolic Problems. 2002. V. 8.
- Zhdanov M.S. Geophysical inverse theory and regularization problems. 2002. P. 609.
- Zhdanov M.S. Inverse theory and applications in geophysics // Inverse Theory and Appl. Geophys. 2015. V. 9. P. 1–704.
- Petrov I.B., Favorskaya A.V., Sannikov A.V., Kvasov I.E. Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step // Math. Model. Comput. Simulat. 2013. V. 5. № 9. P. 409–415.
- Golubev V.I., Petrov I.B., Khokhlov N.I. Numerical simulation of seismic activity by the grid-characteristic method // Comput. Math. and Math. Phys. 2013. V. 53. № 10. P. 1523–1533.
- Khokhlov N.I., Golubev V.I. On the class of compact grid-characteristic schemes // Smart Innovation, Systems and Technolog. 2019. V. 133. P. 64–77.
- Komatitsch D., Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation // Geophys. J. Inter. 1999. V. 139. № 12. P. 806–822.
- Khokhlov N.I., Stetsyuk V.O., Mitskovets I.A. Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method // Компьют. иссле д. и моделирование. 2019. V. 11. P. 1049–1059.
- Mavko G., Mukerji T., Dvorkin J. Effective elastic media: bounds and mixing laws // The Rock Physics Handbook. 2009. № 3. P. 169–228.
- Wang Z., Wang R., Li T., Qiu Hao, Wang F. Pore-scale modeling of pore structure effects on p-wave scattering attenuation in dry rocks // PLoS ONE. 2015. № 5. P. 10.
Дополнительные файлы
