Synthesis and study of dense materials in the Zr–Al–C system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The initial powders Zr, Al, C and Zr, Al, Sc were used for the synthesis of MAX phases of the composition Zr2AlC and Zr3AlC2. The highest content (50.4 vol%) of the MAX phase Zr3AlC2 was obtained using the initial powders Zr/Al/Zr in the ratio of components 1:1.5:2 with the addition of 5 vol% Al. The optimal temperature for the synthesis of a material based on the MAX phase Zr2AlC is 1525° C, a material based on Zr3AlC2 is 1575°C. The structure of the synthesized MAX materials obtained includes elongated grains of the composition Zr2AlC and Zr3AlC2, which determines their high strength. Zirconium carbide, as an intermediate phase, is always present in the final products. Due to the large evaporation of aluminum, the ZrO2 phase is also present in the synthesis products. Excess aluminum contributes to the greatest formation of Zr2AlC and Zr3AlC2 phases during synthesis.

作者简介

I. Arlashkin

St. Petersburg State Institute of Technology (Technical University);I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: iarlashkin@mail.ru

S. Perevislov

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

V. Stolyarova

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences;St. Petersburg State University

参考

  1. Медведева Н.И., Еняшин А.Н., Ивановский А.Л. // ЖCХ. 2011. Т. 52. № 4. С. 806
  2. Medvedeva N.I., Enyashin A.N., Ivanovskii A.L. // J. Struct. Chem. 2011. Vol. 52. P. 785. doi: 10.1134/S0022476611040226
  3. Barsoum M.W. // Progress Solid State Chem. 2000. Vol. 28. N 1-4. P. 201. doi: 10.1016/S0079-6786(00)00006-6
  4. Istomin P.V., Nadutkin A.V., Ryabkov Y.I., Goldin B.A. // Inorg. Mater. 2006. Vol. 42. N 3. P. 250. doi: 10.1134/S0020168506030071
  5. Zhang Z.F., Sun Z.M., Hashimoto H. // Mater. Lett. 2003. Vol. 57. N 7. P. 1295. doi: 10.1016/S0167-577X(02)00974-6
  6. El-Raghy T., Barsoum M.W. // J. Am. Ceram. Soc. 1999. Vol. 82. N 10. P. 2849. doi: 10.1111/j.1151-2916.1999.tb02166.x
  7. Gao N.F., Miyamoto Y., Zhang D. // J. Mater. Sci. 1999. Vol. 34. N 18. P. 4385. doi: 10.1023/A:1004664500254
  8. Jeitschko W., Nowotny H., Benesovsky F. // Monatsh. Chem. 1964. Vol. 95. N 1. P. 178. doi: 10.1007/BF00913068
  9. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. Vol. 267. P. 124625. doi: 10.1016/j.matchemphys.2021.124625
  10. Bykova A.D., Semenova V.V., Perevislov S.N., Markov M.A. // Refract. Ind. Ceram. 2021. Р. 89. doi: 10.1007/s11148-021-00564-x
  11. Перевислов С.Н., Семенова В.В., Лысенков А.С. // ЖНХ. 2021. Т. 66. № 8. С. 987
  12. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. Р. 1100. doi: 10.1134/S0036023621080210
  13. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. P. 215. doi: 10.1007/s11148-022-00709-6
  14. Lapauw T., Lambrinou K., Cabioc'h T., Halim J., Lu J., Pesach A., Rivinf O., Ozeri O., Caspi E.N., Hultman L., Eklund P., Rosén J., Barsoum M.W., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 8. P. 1847. doi: 10.1016/j.jeurceramsoc.2016.02.044
  15. Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M.W., Lambrinou K., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 3. P. 943. doi: 10.1016/j.jeurceramsoc.2015.10.011
  16. Okamoto H. // J. Phase Equilib. Diff. 2002. Vol. 23. N 5. P. 455. doi: 10.1361/105497102770331497
  17. Wang T., Jin Z., Zhao J.C. // J. Phase Equilib. 2001. Vol. 22. N 5. P. 544. doi: 10.1007/s11669-001-0072-4

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023