Synthesis, structure, and thermal expansion of BiCr2(PO4)3, SbCr2(PO4)3 and Bi1-xSbхCr2(PO4)3 solid solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The manifestations of the Bi1- x Sb x Cr2(PO4)3 system with the α-CaMg2(SO4)3 structure were obtained and characterized by the evaporation of salt solutions with heat treatment. Refinement of the Rietveld method for the structure of BiCr2(PO4)3 ( x = 0) and SbCr2(PO4)3 ( x = 1) showed that the [Cr2(PO4)3]3∞ framework is formed by CrO6 octahedra doubled by faces, PO4 tetrahedra are between the dependences, attached to the octahedrons by oxygen vertices, the voids of the framework are populated by six-coordinated bismuth or antimony atoms. By varying the composition of the Bi1- x Sb x Cr2(PO4)3 solid solution everywhere, it is possible to obtain materials with low thermal expansion coefficients: 0.5×10-6 ≤ α av ≤ 1.9×10-6 °C-1.

作者简介

V. Pet'kov

N. I. Lobachevsky National Research Nizhny Novgorod State University

Email: petkov@inbox.ru

D. Lavrenov

N. I. Lobachevsky National Research Nizhny Novgorod State University

E. Asabina

N. I. Lobachevsky National Research Nizhny Novgorod State University

参考

  1. Pet'kov V.I., Asabina E.A., Sukhanov M.V., Schelokov I.A., Shipilov A.S., Alekseev A.A. // Chem. Eng. Trans. 2015. Vol. 43. P. 1825. doi: 10.3303/CET1543305
  2. Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. // Inorg. Chem. 2020. Vol. 59. P. 13245. doi: 10.1021/acs.inorgchem.0c01597
  3. Петьков В.И., Асабина Е.А., Лукутцов А.А., Корчемкин И.В., Алексеев А.А., Демарин В.Т. // Радиохимия. 2015. Т. 57. № 6. С. 540
  4. Pet'kov V.I., Asabina E.A., Lukuttsov A.A., Korchemkin I.V., Alekseev A.A., Demarin V.T. // Radiochemistry. 2015. Vol. 57. N 6. P. 632. doi: 10.1134/S1066362215060119
  5. Abhilash P., Sebastian M.T., Surendran K.P. // J. Eur. Ceram. Soc. 2016. Vol. 36. № 8. P. 1939. doi: 10.1016/j.jeurceramsoc.2016.02.019
  6. Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. // Кристаллография. 2020. Т. 65. № 5. С. 745. doi: 10.31857/S0023476120050173
  7. Pet'kov V.I., Somov N.V., Lavrenov D.A., Sukhanov M.V., Fukina D.G. // Cryst. Rep. 2020. Vol. 65. N 5. P. 716. doi: 10.1134/S106377452005017X
  8. Chong M.K., Zainuddin Z., Omar F.S., Hj J.M.H. // Ceram. Int. 2022. Vol. 48. N 15. P. 22147. doi: 10.1016/j.ceramint.2022.04.202
  9. Moussadik A., Halim M., Arsalane S., Kacimi M., Hamidi A.E., Tielens F. // Mater. Res. Bull. 2022. Vol. 150. P. 111764. doi: 10.1016/j.materresbull.2022.111764
  10. Navarrete-Segado P., Grossin D., Frances C., Tourbin M., Tenailleau C., Duployer B. // Addit. Manuf. 2022. Vol. 50. P. 102542. doi: 10.1016/j.addma.2021.102542
  11. Liu F., Deng D., Wu M., Chen B., Zhou L., Xu S. // J. Alloys Compd. 2021. Vol. 865. P. 158820. doi: 10.1016/j.jallcom.2021.158820
  12. Shen L., Deng S., Jiang R., Liu G., Yang J., Yao X. // Energy Storage Mater. 2022. Vol. 46. P. 175. doi: 10.1016/j.ensm.2022.01.010
  13. Oda K., Saitoh H., Hoaki Y., Shimoda H., Hirao T., Ichiyoshi W., Shimizu Y. // Solid State Ion. 2020. Vol. 346. P. 115212. doi: 10.1016/j.ssi.2019.115212
  14. Zhang Y., Huazhi G., Shuang Y., Ao H. // J. Magn. Magn. Mater. 2020. Vol. 506. P. 166802. doi: 10.1016/j.jmmm.2020.166802
  15. Сафронова Т.В. // Неорг. матер. 2021. T. 57. № 5. С. 467. doi: 10.31857/S0002337X21050067
  16. Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N 5. P. 443. doi: 10.1134/S002016852105006X
  17. Wang J., Wei Y., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48. № 9. P. 12772. doi: 10.1016/j.ceramint.2022.01.147
  18. Ramya R., Buvaneswari G. // J. Nucl. Mater. 2022. Vol. 558. P. 153388. doi: 10.1016/j.jnucmat.2021.153388
  19. Bohre A., Avasthi K., Pet'kov V.I. // J. Ind. Eng. Chem. 2017. Vol. 50. P. 1. doi: 10.1016/j.jiec.2017.01.032
  20. Pilonen P.C., Friis H., Rowe R., Poirier G. // Canad. Mineral. 2020. Vol. 58. P. 1. doi: 10.3749/canmin.2000044
  21. Yaroslavtsev A.B., Stenina I.A. // Russ. J. Inorg. Chem. 2006. Vol. 51. Suppl. P. 97.
  22. Masquelier C.W.C., Rodrıguez-Carvajal J., Gaubicher J., Nazar L. // Chem. Mater. 2000. Vol. 12. № 2. P. 525. doi: 10.1021/cm991138n
  23. Weil M. // Cryst. Res. Technol. 2007. Vol. 42. № 11. P. 1058. doi: 10.1002/crat.200710975
  24. Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. // Canad. Mineral. 2010. Vol. 48. № 6. P. 1469. doi: 10.3749/canmin.48.5.1469
  25. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПбГУ, 2011. Ч. 1.
  26. Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi: 10.1007/s10973-020-09370-y
  27. Rietveld H.M. // Acta Crystallogr. 1967. Vol. 22. Pt 1. P. 151. doi: 10.1107/S0365110X67000234
  28. Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994. Vol. 102. P. 401. doi: 10.2109/jcersj.102.401
  29. Izumi F. // The Rietveld Method. New York: Oxford University Press, 1993. 298 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023