Синтез, спектрально-люминесцентные и ионохромные свойства родамина B, содержащего терминальный (4-гидроксибензил)трифенилфосфонийхлоридный заместитель

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Cинтезировано производное родамина B, содержащее терминальный (4-гидроксибензил)трифенилфосфонийхлоридный заместитель. Его строение установлено при помощи ИК, ЯМР 1H и 13С спектроскопии. Изучены спектрально-люминесцентные свойства и комплексообразование полученного соединения в растворах с катионами Co2+, Cu2+, Ni2+ и Zn2+. Эти ионы вызывают контрастный ионохромный naked-eye эффект с изменением бесцветной окраски раствора на красно-малиновую, связанной с изомеризацией спиролактамной формы родамина в открытую форму. Процесс сопровождается появлением флуоресценции в области 560-600 нм. Особо интенсивной эмиссией характеризуется комплекс с катионом цинка(II), что придает полученному родамину свойства высокочувствительного и эффективного хемосенсора на ионы Zn2+.

Об авторах

Л. Д Попов

Южный федеральный университет

Е. Н Шепеленко

Федеральный исследовательский центр Южный научный центр Российской академии наук

В. А Подшибякин

Научно-исследовательский институт физической и органической химии Южного федерального университета

Т. М Валова

Федеральный научно-исследовательский центр «Кристаллография и фотоника» Российской академии наук

О. В Венидиктова

Федеральный научно-исследовательский центр «Кристаллография и фотоника» Российской академии наук

А. О Айт

Федеральный научно-исследовательский центр «Кристаллография и фотоника» Российской академии наук

А. Д Дубоносов

Федеральный исследовательский центр Южный научный центр Российской академии наук

Email: aled@ipoc.sfedu.ru

Список литературы

  1. Chemosensors: Principles, Strategies, and Applications / Eds E.V. Anslyn, B. Wang. Hoboken: Wiley, 2011.
  2. Sensors in Water Pollutants Monitoring: Role of Material / Eds. D. Pooja, P. Kumar, P. Singh, S. Patil. Singapore: Springer, 2020.
  3. Dongare P.R., Gore A.H. // ChemistrySelect. 2021. Vol. 6. P. 5657. doi: 10.1002/slct.202101090
  4. You L., Zha D., Anslyn E.V. // Chem. Rev. 2015. Vol. 115. P. 7840. doi: 10.1021/cr5005524
  5. Chhatwal M., Kumar A., Singh V., Gupta R.D., Awasthi S.K. // Coord. Chem. Rev. 2015. Vol. 292. P. 30. doi: 10.1016/j.ccr.2015.02.009
  6. Advances in Spectroscopy: Molecules to Materials / Eds D.K. Singh, S. Das, A. Materny. Singapore: Springer, 2019.
  7. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Singapore: Springer, 2006.
  8. Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
  9. Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
  10. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
  11. Kaur N., Kumar S. // Tetrahedron. 2011. Vol. 67. P. 9233. doi: 10.1016/j.tet.2011.09.003
  12. Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
  13. Patil N.S., Dhake R.B., Ahamed M.I., Fegade U. // J. Fluoresc. 2020. Vol. 30. P. 1295. doi: 10.1007/s10895-020-02554-7
  14. Upadhyay S., Singh A., Sinha R., Omer S., Negi K. // J. Mol. Struct. 2019. Vol. 1193. P. 89. doi: 10.1016/j.molstruc.2019.05.007
  15. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
  16. Daly B., Ling J., de Silva P. // Chem. Soc. Rev. 2015. Vol. 44. P. 4203. doi: 10.1039/C4CS00334A
  17. Fu Y., Finney N.S. // RSC Adv. 2018. Vol. 8. P. 29051. doi: 10.1039/C8RA02297F
  18. Yeung M.C., Yam V.W. // Chem. Soc. Rev. 2015. Vol. 44. P. 4192. doi: 10.1039/C4CS00391H
  19. Lee M.H., Kim J.S., Sessler J.L. // Chem. Soc. Rev. 2015. Vol. 44. P. 4185. doi: 10.1039/C4CS00280F
  20. Carter K.P., Young A.M., Palmer A.E. // Chem. Rev. 2014. Vol. 114. P. 4564. doi: 10.1021/cr400546e
  21. Sun W., Li M., Fan J., Peng X. // Acc. Chem. Res. 2019. Vol. 52. P. 2818. doi: 10.1021/acs.accounts.9b00340
  22. Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
  23. Popova O.S., Revinskii Yu.V., Tkachev V.V., Utenyshev A.N., Karlutova O.Yu., Starikov A.G., Dubonosov A.D., Bren V.A., Aldoshin S.M., Minkin V.I. // J. Mol. Struct. 2020. Vol. 1199. Article 127013. doi: 10.1016/j.molstruc.2019.127013
  24. Nikolaeva O.G., Shepelenko E.N., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 402. doi: 10.1016/j.mencom.2016.09.012
  25. Chi W., Qi Q., Lee R., Xu Z., Liu X. // J. Phys. Chem. (C). 2020. Vol. 124. P. 3793. doi: 10.1021/acs.jpcc.9b11673
  26. Oliveira E., Bertolo E., Nunez C., Pilla V., Santos H.M., Fernandez-Lodeiro J., Fernandez-Lodeiro A., Djafari J., Capelo J.L., Lodeiro C. // ChemistryOpen. 2018. Vol. 7. P. 9. doi: 10.1002/open.201700135
  27. Chen X., Pradhan T., Wang F., Kim J.S., Yoon J. // Chem. Rev. 2012. Vol. 112. P. 1910. doi: 10.1021/cr200201z
  28. Zheng H., Zhan X.Q., Bian Q.N., Zhang X.J. // Chem. Commun. 2013. Vol. 49. P. 429. doi: 10.1039/C2CC35997A
  29. Podshibyakin V.A., Shepelenko E.N., Karlutova O.Y., Dubonosova I.V., Borodkin G.S., Popova O.S., Zaichenko S.B., Dubonosov A.D., Bren V.A., Minkin V.I. // Tetrahedron. 2022. V. 109. Article 132710. doi: 10.1016/j.tet.2022.132710
  30. Hu J., Long C., Fu Q., Ni P., Yin Z. // J. Photochem. Photobiol. (A). 2019. Vol. 379. P. 105. doi: 10.1016/j.jphotochem.2019.04.031
  31. Choudhury N., Ruidas B., Mukhopadhyay C.D., De P. // ACS Appl. Polymer Mater. 2020. Vol. 2. P. 5077. doi: 10.1021/acsapm.0c00878
  32. Mondal S., Bandyopadhyay C., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 1. doi: 10.1080/10610278.2018.1522444
  33. Mondal S., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 645. doi: 10.1080/10610278.2019.1632456
  34. Deng F. Dongsheng Sun D., Yang S., Huang W., Huang C., Xu Z., Liu L. // Spectrochim. Acta (A). 2022. Vol. 268. Article 120662. doi: 10.1016/j.saa.2021.120662
  35. Sun J., Tian-rong Li T., Yang Z. // J. Photochem. Photobiol. (A). 2021. Vol. 411. Article 113207. doi: 10.1016/j.jphotochem.2021.113207
  36. Karuk Elmas S.N., Dinckan S., Arslan F.N., Aydin D., Savran T., Yilmaz I. // J. Photochem. Photobiol. (A). 2021. Vol. 421. Article 113521. doi: 10.1016/j.jphotochem.2021.113521
  37. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.
  38. Wei Z., Liu Y.Q., Wang S.Z., Yao L., Nie H.F., Wang Y.A., Liu X.Y., Zheng Z.B., Li S. // Bioorg. Med. Chem. 2017. Vol. 25. P. 4497. doi: 10.1016/j.bmc.2017.06.041
  39. Kureshy R.I., Prathap K.J., Roy T., Maity N.C., Khan N.H., Abdi S.H.R., Bajaj H.C. // Adv. Synth. Catal. 2010. Vol. 352. P. 3053. doi: 10.1002/adsc.201000428
  40. Shu H., Wu X., Zhou B., Han Y., Jin M., Zhu J., Bao X. // Dyes Pigm. 2017. Vol. 136. P. 535. doi: 10.1016/j.dyepig.2016.08.063

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023