The structure of individual variability of pollen morphological features of the genus Physalis L. (Solanaceae) and methods of its interpretation (genesis or morphoses)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphology of pollen grains in samples of 42 species of the genus Physalis L. was studied using light and electron scanning microscopes. Pollen is morphologically fairly uniform. Although the intrageneric subgroups (subgenera and sections) are heterogeneous in terms of pollen morphology, it is not possible to draw boundaries between them, since the same variants of characters are found in different subgenera and sections. SEM-detected sculpture details are good additional features for the characterization of some species. The pollen of P. alkekengi, sometimes isolated as a monotypic subgenus Physalis, or a separate genus, slightly differs from all other Physalis in micro-verrucate-echinate sculpture. In samples of 19 species (44% of those studied), various rare pollen forms deviating from the typical ones in the number and arrangement of apertures were found. On the example of morphological features of pollen of the genus Physalis and other unrelated taxa, the properties of the complete individual variability of the gametophyte generation are described as an extreme model (having maximum completeness with minimal complexity) for studying the properties of variability. A non-typological description and interpretation of the observed properties of individual morphological variability is given. The own properties of variability (continuity, transitive ordering, parallelism) are described and are not fully provided for in the typological and phylogenetic approach, in which the genus-species discrete-hierarchical ordering of biodiversity is considered universal. The described properties of variability show that during asexual reproduction in the gametophyte generation of pollen (ontologically complete and genetically uniform; haploid, unicellular, spherical living bodies), the ancestral type of organization is not inherited (the typical form is taxon-specific, physiologically normal, adaptive, functional), but with a certain frequency in the generation (in the absence of genetic variability), morphosis arise (form rebirth – non-inherited, but regularly occurring variability), which add up to the series of metamorphosis. In the full generation of the genealogical line, there is not the genesis of the form (generation, the emergence of one form from another), but morphosis (rebirth of the form, change in generic characteristics, archetype, body scheme, without changing the species characteristics). Individual variability can be described as metamorphosis, the fluidity of an individual form, according to J. W. Goethe (complete sets of morphoses, forming a continuous and successive morphological series of living bodies between various typical forms), or the indeterminacy of discrete forms in a continuous series of variability.

Full Text

Restricted Access

About the authors

A. E. Pozhidaev

Komarov Botanical Institute, RAS

Author for correspondence.
Email: pae62@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197376

V. V. Grigoryeva

Komarov Botanical Institute, RAS

Email: mikhailov_val@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197376

A. N. Semenov

Komarov Botanical Institute, RAS

Email: grigorieva@binran.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197376

References

  1. Айрапетян А.М., 1991. Апертурный полиморфизм пыльцы у вида Physalis maxima L. (Solanaceae) // Флора, растительность и растительные ресурсы Армении. Вып. 13. С. 107–115.
  2. Айрапетян А.М., 2002. Палинологические данные к подсемейству Solanoideae (Solanaceae Juss.): триба Solaneae // Флора, растительность и растительные ресурсы Армении. Т. 14. С. 118–130.
  3. Бергсон А., 1999. Творческая эволюция. Материя и память. Минск: Харвест. 1408 с.
  4. Гете И.В., 2014. Научные сочинения. Т. 1. Образование и преобразование органических существ (морфология). М.: КМК. 696 с.
  5. Григорьева В.В., Брицкий Д.А., Коробков А.А., 2018. Морфология пыльцевых зерен видов рода Artemisia (Asteraceae) Дальнего Востока России // Бот. журн. Т. 103. № 10. С. 1255–1264. https://doi.org/10.7868/S0006813618100046
  6. Григорьева В.В., Пожидаев А.Е., Семенов А.Н., Брицкий Д.А., 2019. Морфологическая изменчивость пыльцы представителей рода Nicotiana (Solanaceae) // Бот. журн. Т. 104. № 6. С. 900–917. https://doi.org/10.1134/S0006813619060061
  7. Кренке Н.П., 1933–1935. Феногенетическая изменчивость // Сборник работ отделения фитоморфогенеза. Т. I. М.: Изд. Биол. ин-та им. Тимирязева. С. 11–415.
  8. Куприянова Л.А., Алешина Л.А., 1967. Палинологическая терминология покрытосеменных растений. Л.: Наука. 84 с.
  9. Любищев А.А., 1982. Проблемы формы, систематики и эволюции организмов. М.: Наука. 376 с.
  10. Мейен С.В., 1978. Основные аспекты типологии организмов // Журн. общ. биологии. Т. 39. № 4. С. 495–508.
  11. Павлинов И.Я., 2023. Проблема вида в биологии. Истоки и современность. М.: Т-во науч. изд. КМК. 216 с.
  12. Пожидаев A.E., 1989. Структура экзины пыльцевых зерен представителей сем. Lamiaceae // Бот. журн. Т. 74. № 10. С. 1410–1422.
  13. Пожидаев А.Е., 2009. Структура многообразия морфологического признака на примере расположения апертур пыльцы цветковых и естественная упорядоченность биологического многообразия. Или – что такое многообразие (описание и интерпретация) // Вид и видообразование. Анализ новых взглядов и тенденций. Тр. ЗИН РАН. Приложение № 1. М.: КМК. C. 151–182.
  14. Пожидаев А.Е., 2015. Рефренная структура биологического многообразия и теория филогенеза // Палеоботанический временник. Т. 2. С. 115–127.
  15. Пожидаев А.Е., Григорьева В.В., Семенов А.Н., 2023. Структура естественной изменчивости палиноморфологических признаков на примере некоторых видов Nierenbergia и Bouchetia (Solanaceae) и естественная система биомногообразия // Журн. общ. биологии. Т. 84. № 4. С. 279–295. https://doi.org/10.31857/S0044459623040061
  16. Пожидаев А.Е., Григорьева В.В., Семенов А.Н., 2024. Структура индивидуальной изменчивости палиноморфологических признаков рода Cestrum (Solanaceae Juss.). Типичная форма и отклонения (морфозы) // Журн. общ. биологии. Т. 85. № 3. С. 207–229.
  17. Пожидаев А.Е., Петрова Н.В., 2022. Структура изменчивости палиноморфологических признаков внутри рода Galeopsis l. Hjl. (Lamiaceae) и за его пределами в связи с идеей дивергентной морфологической эволюции // Журн. общ. биологии. Т. 83. № 3. С. 151–169. https://doi.org/10.31857/S004445962203006X
  18. Телицына И.В., Григорьева В.В., Пожидаев А.Е., Гаврилова О.А., Шванова В.В., 2019. Морфология пыльцевых зерен некоторых видов рода Polygala (Polygalaceae) флоры Кавказа // Бот. журн. Т. 104. № 7. С. 1110–1121. https://doi.org/10.1134/S0006813619050168
  19. Свасьян К.А., 2001. Философское мировоззрение Гете. М.: Evidentis. 219 с.
  20. Сладков А.Н., 1967. Введение в спорово-пыльцевой анализ. М.: Наука. 275 с.
  21. Чайковский Ю.В., 2004. О природе случайности. М.: Центр системных исследований. 280 с.
  22. Чайковский Ю.В., 2018. Автопоэз. Опыт пособия тем, кто хочет понять эволюцию живого. М.: КМК. 560 с.
  23. Шелудякова М.Б., Григорьева В.В., Пожидаев А.Е., 2017. Морфология пыльцевых зерен представителей рода Scrophularia (Scrophulariaceae) // Бот. журн. Т. 102. № 3. С. 361–379.
  24. Airapetyan A.M., 2008. Features of the exine ornamentation of pollen grains in the family Solanaceae Juss. I. The simple types of ornamentation // Nat. Sci. V. 2. № 11. P. 46–50.
  25. Albert B., Matamoro-Vidal A., Prieu C., Nadot S., Till-Bottraud I., et al., 2022. A review of the developmental processes and selective pressures shaping aperture pattern in angiosperms // Plants. V. 11. Art. 357. https://doi.org/10.3390/plants11030357
  26. Blackmore S., Crane P.R., 1998. The evolution of apertures in the spores and pollen grains of embryophytes // Reproductive Biology / Eds Owens S.J., Rudall P.J. Kew: Royal Botanic Gardens. P. 159–180.
  27. Campo M., van, 1976. Patterns of pollen morphological variation within taxa // The Evolutionary Significance of the Exine / Eds Ferguson I.K., Muller J. L.: Academic Press. P. 125–137.
  28. Cope E.D., 1896. Primary Factors of Organic Evolution. Chicago: Open Court. 547 p.
  29. D’Arcy W.G., 1991. The Solanaceae since 1976, with a review of its biogeography // Solanaceae II. Taxonomy, Chemistry, Evolution / Eds Hawkes J.G., Lester R.N., Nee M., Estrada N. Kew: Royal Botanic Gardens. P. 75–138.
  30. Dajoz I., Till-Bottraud I., Gouyn P.H., 1993. Pollen aperture polymorphism and gametophyte performance in Viola diersifolia // Evolution. V. 47. № 4. P. 1080–1093.
  31. Gavrilova O., Britski D., Grigorieva V., Tarasevich V., Pozhidaev A., Leunova V., 2018. Morphology of pollen of representatives of the genus Euonymus (Celastraceae) // Turczaninowia. Т. 21. № 4. С. 188–206.
  32. Erdtman G., 1952. Pollen Morphology and Taxonomy: Angiosperms. Stockholm: Almquist and Wiksell. 539 p.
  33. Estrada E., Martínez M., 1998. Physalis (Solanaceae) and allied genera: Tzeltalia, a new genus from the highlannds of southern Mexico and northwestern Guatemala // Brittonia. V. 50. № 3. P. 285–295.
  34. Feng S., Jiang M., Shi Y., Jiao K., Shen C., et al., 2016. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study // Front. Plant Sci. V. 7. Art. 1047. https://doi.org/10.3389/fpls.2016.01047
  35. Ferguson M.C., Coolidge E.B., 1932. A cytological and a genetical study of Petunia. IV. Pollen grains and method of studying them // Am. J. Bot. V. 19. № 7. Р. 644–658.
  36. Hendrych R., 1989. Physalis alkekengi in Europa und in der Tschechoslowakei besonders // Acta Univ. Corolinae. Biol. V. 33. P. 1–42.
  37. Henry D.R., 1958. Morphological studies of diploid and autotetraploid plants of Physalis pruinosa L. PhD Thesis. Ohio. 90 p.
  38. Hofmann C.-C., Zetter R., 2007. Upper Cretaceous pollen flora from the Vilui Basin, Siberia: Circumpolar and endemic Aquilapollenites, Manicorpus and Azonia species // Grana. V. 46. P. 227–249.
  39. In Memoriam. С.В. Мейен: палеоботаник, эволюционист, мыслитель, 2007. М.: ГЕОС. 348 с.
  40. Laws H.M., 1965. Pollen grain morphology of polyploid Oenotheras // J. Heredity. V. 56. № 1. Р. 18–21.
  41. Martínez M., 1998. Revision of Physalis section Epeteiorhiza // Anales Inst. Biol. Univ. Nac. Autón. México. Bot. V. 69. № 2. P. 71–117.
  42. Martínez M., 1999. Infrageneric taxonomy of Physalis // Solanaceae IV: Advances in Biology and Utilization. Kew: Royal Botanic Gardens. P. 275–283.
  43. Meyen S.V., 1973. Plant morphology in its nomothetical aspects // Bot. Rev. V. 39. № 3. P. 205–260.
  44. Murry L.E., Eshbaugh W.H., 1971. A polynological study of the Solaninae (Solanaceae) // Grana. V. 11. № 2. P. 65–78.
  45. Najčevska C.M., Speckmann G.J., 1968. Nambers of chloroplasts and pollen grain pores in diploid and tetraploid varieties of some Trifolium species // Euphytica. V. 17. № 3. P. 357–362.
  46. Olmstead R.G., Bohs L., Migid H.A., Santiago-Valentin E., Garcia V.F., Collier S.M., 2008. A molecular phylogeny of the Solanaceae // Taxon. V. 57. P. 1159–1181.
  47. Perveen A., Qaiser M., 2007. Pollen morphology of family Solanaceae from Pakistan // Pak. J. Bot. V. 39. № 7. P. 2243–2256.
  48. Pozhidaev A.E., 1992. The origin of three- and sixcolpate pollen grains in the Lamiaceae // Grana. V. 31. № 1. P. 49–52.
  49. Pozhidaev A.E., 1993. Polymorphism of pollen in the genus Acer (Aceraceae). Isomorphism of deviant forms of angiosperm pollen // Grana. V. 32. № 2. P. 79–85. https://doi.org/10.1080/00173139309429457
  50. Pozhidaev A.E., 1995. Pollen morphology of the genus Aesculus (Hippocastanaceae). Patterns in the variety of morphological characteristics // Grana. V. 34. № 1. P. 10–20. https://doi.org/10.1080/00173139509429028
  51. Pozhidaev A.E., 1998. Hypothetical way of pollen aperture patterning. 1. Formation of 3-colpate patterns and endoaperture geometry // Rev. Palaeobot. Palynol. V. 104. № 1. P. 67–83. https://doi.org/10.1016/S0034-6667(98)00045-1
  52. Pozhidaev A.E., 2000a. Hypothetical way of pollen aperture patterning. 2. Formation of polycolpate patterns and pseudoaperture geometry // Rev. Palaeobot. Palynol. V. 109. P. 235–254. https://doi.org/10.1016/s0034-6667(99)00057-3
  53. Pozhidaev A.E., 2000b. Pollen variety and aperture patterning // Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens. P. 205–225.
  54. Pozhidaev A.E., 2002. Hypothetical way of pollen aperture patterning. 3. A family-based study of Krameriaceae // Rev. Palaeobot. Palynol. V. 127. № 1. P. 1–23. https://doi.org/10.1016/S0046667(02)00251-8
  55. Rydberg P.A., 1896. The North American species of Physalis and related genera // Mem. Torrey Bot. Club. V. 4. P. 297–372.
  56. Shishova M., Puzanskiy R., Gavrilova O., Kurbanniazov S., Demchenko K., et al., 2019. Metabolic alterations in male-sterile potato as compared to male-fertile // Metabolites. V. 9. № 2. Art. 24. https://doi.org/10.3390/metabo9020024
  57. Simpson B.B., 1989. Krameriaceae // Flora Neotropica. V. 49. № 4. P. 1–109.
  58. Till-Bottraud I., Mignot A., Paepe R., de, Dajoz I., 1995. Pollen heteromorphism in Nicotiana tabacum (Solanaceae) // Am. J. Bot. V. 82. № 8. P. 1040–1048.
  59. Walker J.W., Doyle J.A., 1975. The bases of angeosperms phylogeny: Palynology // Ann. Miss. Bot. Gard. V. 62. № 3. P. 664–723. https://doi.org/10.2307/2395271
  60. Wang R., 2014. A new combination in Alkekengi (Solanaceae) for the Flora China // Phytotaxa. V. 178. № 1. P. 59–60.
  61. Whitson M., Manos P.S., 2005. Untangling Physalis (Solanaceae) from the physaloids: A two-gene phylogeny of the Physalinae // Syst. Bot. V. 30. № 1. P. 216–230. https://doi.org/10.1600/0363644053661841
  62. Zamora-Tavares M., Martínez M., Magallón M., Guzmán-Dávalos L., Vargas-Ponce O., 2016. Physalis and physaloids: A recent and complex evolutionary history // Mol. Phylogen. Evol. V. 100. № 7. P. 41–50.
  63. Zhang Z.-Y., Lu A.-M., 1995. Pollen morphology of Physalis (Solanaceae) in China and its systematic significance // Cathaya. V. 7. P. 63–74.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphology of typical pollen of representatives of the genus Physalis (CM, SEM): a–d – P. alkekengi; d’ – P. glabripes; ef–k – P. lobata; l–p – P. lanceifolia; p' – P. acuminata. a, c, f, h, l, n – view from the pole; b, d, g, i, m, o – view from the equator; d, d’, j, p, p’ – surface sculpture (SEM). a, b, f, g, l, m – CM; c–d, d’, h–j, n–p, p’ – SEM. The upper and lower focus are shown for each pollen grain (CM). Scale bars, µm: a–g, f–i, l–o – 10; d, d’, j, p, p’ – 1.

Download (1MB)
3. Fig. 2. Morphology of typical pollen grains of the genus Physalis (CM, SEM): a–d – P. pruinosa; f–j – P. ixocarpa; k–p – P. angustifolia. a, c, f, h, l, n – view from the pole; b, d, g, i, m, o – view from the equator; d, j, p – surface sculpture (SEM). a, b, f, g, l, m – CM; c–d, h–j, n–p – SEM. The upper and lower focus are shown for each pollen grain (CM). Scale bars, µm: a–g, f–i, l–o – 10; d, j, p – 1.

Download (1MB)
4. Fig. 3. Morphology of typical pollen grains of the genus Physalis (CM, SEM): a–d – P. parviflora; d’ – P. nicandroides; е–к – P. missouriensis; л–п – P. lagascae. a, c, e, h, l, n – view from the pole; b, d, g, i, m, o – view from the equator; d, d’, j, p – surface sculpture (SEM). a, b, e, g, l, m – CM; c–d, d’, h–j, n–p – SEM. The upper and lower focus (CM) are shown for each pollen grain. Scale bars, µm: a–g, e–i, l–o – 10; d, d’, j, p – 1.

Download (1MB)
5. Fig. 4. Deviating forms of the arrangement of pollen apertures of the genus Physalis (CM): a, e, g – P. gracilis; b–d – P. virginiana; h, k, p, t – P. adulterina; and – P. subintegra; l, n, y – P. macrophysa; m – P. angustifola; o – P. angulata; p – P. parviflora; c – P. сinerascens; f – P. mollis. a – form A; b – form B; c, d – form G; d – form D (typical T); e – form B; g – form Ж (solid-aperture, tennis ball-shape); h, i, l – form Ж (separate aperture W-shape); m – form Z; n, p, p – form I; o – form E; c – form L; t – form M; y, f – deflecting 3-colporate pollen grain with oblique arrangement of endoapertures. B, V, D, Z, L – intermediate forms of aperture arrangement. For letter designations of forms, see Fig. 5. The upper and lower focus (CM) are shown for each pollen grain. Scale bars are 10 µm.

Download (604KB)
6. Fig. 5. Schematic representation of the diversity of pollen forms of the genus Physalis and the periodic structure of ordering of the diversity of pollen forms of angiosperms. a – Schematic representation of the diversity of pollen forms of the genus Physalis (A–M – diversity of pollen forms of the first period, T – typical pollen grains); reduced images at the bottom to the right of forms G, D, Zh, I, K and M show the same forms in a different projection. b – Distribution of the occurrence of pollen forms by the number of species of the genus Physalis (the height of the columns and the numbers for each form in the diagram indicate the number of species in which the indicated form was found).

Download (294KB)
7. Fig. 6. Parallelism of typical and deviant pollen forms of some taxa of angiosperms. a–c – Krameria secundiflora DC.; g – K. grayi Rose; d–g – K. cistoides Hook.; h – K. ramosissima S. Wats; and – K. erecta Willd. ex Shultes; j – K. parviflora Benth (Krameriaceae); l – Acer maybei Maxim. (Sapindaceae); m – Eupomatia laurina R. Br. (Eupomatiaceae); n – Scutallaria dubia Taliev et Schirj. (Lamiaceae); o – Acer davidii Franch. (Sapindaceae); n – Monstera deliciosa Liebm. (Araceae); p – Pedicularis peduncularis Popov (Scrophulariaceae); c – Alsodeia echinocarpa Korth. (Violaceae); t, y – Acanthosyris falcata Griseb. (Santalaceae); f – Euphorbia leptocaula Boiss.; x – E. saravschanica Regel (Euphorbiaceae); c – Eugenia luzonensis Snerr. (Myrtaceae). a–i, m, p, r – typical pollen grains (marked with the letter T in the upper right corner); k, l, n, o, s–c – atypical pollen forms. a–c – 3-colpate form D; g–zh – acolpate-3-ore form D; z, i – acolpate, endoaperture of form A; k – acolpate, endoaperture of form Zh (tennis ball form); z, i, m–r – form A; k, l – form Zh (tennis ball form); s–c – form E (s, t – right variant; x, c – left variant). For letter designations of forms, see Fig. 5. a–c – typical pollen grains of p. Krameria (Krameriaceae) with exoapertures; g–f – without exoapertures. a, g, e, h, c, t, h, c – SM; b, c, e, f, g–r, u, f – SEM. Upper and lower focus (SM) are shown for each pollen grain. Scale bars – 10 µm.

Download (760KB)

Copyright (c) 2024 Russian Academy of Sciences