Bet-hedging strategies in Heracleum mantegazzianum Sommier & Levier (Apiaceae) populations in European Northeast Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the concept of bet-hedging, this study explores the mechanisms that maintain the Heracleum mantegazzianum Sommier & Levier populations size and age structure in the absence of a long-term soil seed bank for this species. The research focuses on the dynamics of mericarpia (“seeds”) in the soil bank of H. mantegazzianum, the number of seedlings, and juvenile individuals in the Middle Taiga subzone of the Komi Republic. The populations of H. mantegazzianum are characterized by the accumulation of a significant number of empty seed coats in the soil, while the median number of viable mericarpia does not exceed 2000 pieces per square meter. A prolonged period of natural stratification, lasting up to six months, guarantees that virtually all the seeds from the previous harvest will mature and sprout promptly in the spring. Consequently, in the European Northeast Russia climate, the plants H. mantegazzianum establish a transient seed bank. The number of juvenile individuals of H. mantegazzianum remains relatively stable at approximately 200 individuals per square meter, attributed to a consistent supply of new seeds, rapid spring development of seedlings, and the retention of individuals in a juvenile stage during their second year of life. The utilization of light resources during spring and autumn, along with the ability to enter a state of dormancy during the summer, contribute to the survival and maintenance of juvenile individuals under conditions of intense intra-specific competition. In H. mantegazzianum, the bet-hedging strategy is implemented through the reproduction of an extremely small fraction (less than 0.01%) of the total population, the presence of a sufficient bank of underground dormant buds, and the ability of juvenile individuals to enter a state of forced dormancy.

Full Text

Restricted Access

About the authors

I. V. Dalke

Komi Scientific Centre, Ural Branch of RAS

Author for correspondence.
Email: dalke@ib.komisc.ru

Institute of Biology

Russian Federation, Kommunisticheskaya, 28, Syktyvkar, 167982

R. V. Malyshev

Komi Scientific Centre, Ural Branch of RAS

Email: dalke@ib.komisc.ru

Institute of Biology

Russian Federation, Kommunisticheskaya, 28, Syktyvkar, 167982

I. G. Zakhozhiy

Komi Scientific Centre, Ural Branch of RAS

Email: dalke@ib.komisc.ru

Institute of Biology

Russian Federation, Kommunisticheskaya, 28, Syktyvkar, 167982

I. F. Chadin

Komi Scientific Centre, Ural Branch of RAS

Email: dalke@ib.komisc.ru

Institute of Biology

Russian Federation, Kommunisticheskaya, 28, Syktyvkar, 167982

References

  1. Аджиев Р.К., Онипченко В.Г., Текеев Д.К., 2012. Сохранение жизнеспособности погребенных семян в альпийских фитоценозах Северо-Западного Кавказа: итоги пятилетнего эксперимента // Журн. общ. биологии. Т. 73. № 6. С. 453–458.
  2. Антипина Г.С., Маганов И.А., Платонова Е.А., Фалин А.Ю., 2017. Борщевик Сосновского (Heracleum sosnowskyi Manden.) в Ботаническом саду ПетрГУ // Hortus Bot. Т. 12. C. 445–453. https://doi.org/10.15393/j4.art.2017.4842
  3. Атлас Республики Коми по климату и гидрологии, 1997 / Под ред. Таскаева А.И. М.: ДиК, Дрофа. 116 с.
  4. Далькэ И.В., Маслова С.П., Плюснина С.Н., Зрайченко Е.С., Бобров Ю.А., 2023. Новый метод определения календарного возраста растений Heracleum sosnowskyi и оценка на его основе возрастного состава в ценопопуляциях вида на севере // Экология. № 3. С. 212–219. https://doi.org/10.31857/S0367059723030022
  5. Далькэ И.В., Чадин И.Ф., 2010. Влияние глифосатсодержащего гербицида на рост, развитие и функциональные показатели борщевика Сосновского // Изв. Коми НЦ УрО РАН. № 4. С. 36–42.
  6. Далькэ И.В., Чадин И.Ф., 2023. Моделирование скорости увеличения площади ценопопуляций Heracleum sosnowskyi Manden. и Heracleum mantegazzianum Sommier & Levier // Росс. журн. биол. инвазий. № 3. С. 30–47. https://doi.org/10.35885/1996-1499-16-3-30-47
  7. Далькэ И.В., Чадин И.Ф., Захожий И.Г., 2018. Анализ мероприятий по ликвидации нежелательных зарослей борщевика Сосновского (Heracleum sosnowskyi Manden.) на территории Российской Федерации // Росс. журн. биол. инвазий. № 3. С. 44–61.
  8. Дудова К.В., Джатдоева Т.M., Дудов С.В., Ахметжанова А.А., Текеев Д.К., Онипченко В.Г., 2019. Конкурентная стратегия растений субальпийского высокотравья Северо-Западного Кавказа // Вестн. МГУ. Сер. 16. Биол. Т. 74. № 3. С. 179–187.
  9. Крылов А.К., Марков А.В., Александров Ю.И., 2020. Единство популяции как способ выживания в нестабильной среде // Журн. общ. биологии. Т. 81. № 3. С. 194–207. https://doi.org/10.31857/S0044459620030057
  10. Кудинов М.М., Касач А.А., Чекалинская И.И., Черник В.В., Чурилов А.К., 1980. Интродукция борщевиков в Белоруссии. Минск: Наука и техника. 200 c.
  11. Панасенко Н.Н., 2017. Некоторые вопросы биологии и экологии борщевика Сосновского (Heracleum sosnowskyi Manden.) // Росс. журн. биол. инвазий. № 2. С. 95–106.
  12. Сацыперова И.Ф., 1984. Борщевики флоры СССР – новые кормовые растения. Л.: Наука. 223 с.
  13. Скупченко Л.А., 1989. Семеноведение борщевика на Севере. Л.: Наука. 119 с.
  14. Тихомиров В.Н., 1958. Сравнительная морфология гинецея и плода зонтичных СССР. Автореф. дис.… канд. биол. наук. М. 15 c.
  15. Ткаченко К.Г., 2020. Гетеромерикарпия Heracleum sosnowskyi Manden. (Umbelliferae = Apiaceae) // Тр. по прикл. ботанике, генетике и селекции. Т. 181. № 4. С. 156–163. https://doi.org/10.30901/2227-8834-2020-4-156-163
  16. Уранов А.А., 1975. Возрастной спектр фитоценопопуляций как функция времени и энергетических волновых процессов // Науч. докл. высш. шк. Биол. науки. № 2. С. 7–33.
  17. Чадин И.Ф., 2020. Тотальное уничтожение // АграрникЪ-A. № 1 (105). С. 16–18.
  18. Шадрин Д.М., Далькэ И.В., Захожий И.Г., Шильников Д.С., Кожин М.Н., Чадин И.Ф., 2024. Молекулярно-генетические исследования Heracleum sosnowskyi Manden. и Heracleum mantegazzianum Sommier & Levier (Apiaceae) европейской части России // Росс. журн. биол. инвазий. № 2. С. 153–171. https://doi.org/10.35885/1996-1499-17-2-153-171
  19. Byun C., Blois S., de, Brisson J., 2018. Management of invasive plants through ecological resistance // Biol. Invasions. V. 20. P. 13–27. https://doi.org/10.1007/s10530-017-1529-7
  20. Childs D.Z., Metcalf C.J.E., Rees M., 2010. Evolutionary bet-hedging in the real world: Empirical evidence and challenges revealed by plants // Proc. Roy. Soc. B. Biol. Sci. V. 277. № 1697. P. 3055–3064. https://doi.org/10.1098/rspb.2010.0707
  21. Cohen O., Riov J., Katan J., Gamliel A., Bar (Kutiel) P., 2008. Reducing persistent seed banks of invasive plants by soil solarization – the case of Acacia saligna // Weed Sci. V. 56. № 6. P. 860–865. https://www.jstor.org/stable/25148610
  22. Dalke I.V., Chadin I.F., Zakhozhiy I.G., Malyshev R.V., Maslova S.P. et al., 2015. Traits of Heracleum sosnowskyi plants in monostand on invaded area // PLoS One. V. 10. № 11. Art. e0142833. https://doi.org/10.1371/journal.pone.0142833
  23. Dalke I.V., Maslova S.P., Zakhozhiy I.G., Golke G.A., Smotrina Yu.A., 2024. Structure of cenopopulations of Heracleum sosnowskyi and mechanisms for maintaining their stability under the north conditions // Russ. J. Ecol. V. 55. № 2. P. 79–88. https://doi.org/10.1134/S1067413624020024
  24. Dalke I.V., Novakovskiy A.B., Maslova S.P., Dubrovskiy Y.A., 2018. Morphological and functional traits of herbaceous plants with different functional types in the European Northeast // Plant Ecol. V. 219. P. 1295–1305. https://doi.org/10.1007/s11258-018-0879-2
  25. Pyšek P., Cock M.J.W., Nentwig W., Ravn H.P., 2007. Ecology and Management of Giant Hogweed (Heracleum mantegazzianum). Wallingford: CAB International. 352 p.
  26. Evans M.E.K., Dennehy J.J., 2005. Germ banking: Bet-hedging and variable release from egg and seed dormancy // Quart. Rev. Biol. V. 80. № 4. P. 431–451. https://doi.org/10.1086/498282
  27. Gioria M., Carta A., Baskin C.C., Dawson W., Essl F., et al., 2021. Persistent soil seed banks promote naturalisation and invasiveness in flowering plants // Ecol. Lett. V. 24. № 8. P. 1655–1667. https://doi.org/10.1111/ele.13783
  28. Gioria M., Osborne B., 2009. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches // J. Veg. Sci. V. 20. № 3. P. 547–556. https://doi.org/10.1111/j.1654-1103.2009.01054.x
  29. Grime J.P., 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd ed. Chichester: John Wiley and Sons. 417 p.
  30. Gudžinskas Z., Žalneravičius E., 2018. Seedling dynamics and population structure of invasive Heracleum sosnowskyi (Apiaceae) in Lithuania // Ann. Bot. Fenn. V. 55. № 4/6. P. 309–320.
  31. Jodaugienė D., Marcinkevičienė А., Sinkevičienė А., 2018. Control of Heracleum sosnowskyi in Lithuania // Proc. 28th German Conference on Weed Biology and Weed Control. Julius Kühn-Institut. V. 458. P. 275–280. https://doi.org/10.5073/jka.2018.458.039
  32. Moravcová L., Carta A., Pyšek P., Skálová Н., Gioria M., 2022. Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs // Sci. Rep. V. 12. Art. 8859. https://doi.org/10.1038/s41598-022-12884-0
  33. Moravcová L., Pyšek P., Krinke L., Müllerová J., Perglová I., Pergl J., 2018. Long-term survival in soil of seed of the invasive herbaceous plant Heracleum mantegazzianum // Preslia. V. 90. № 3. P. 225–234. https://doi.org/10.23855/preslia.2018.225
  34. Moravcová L., Pyšek P., Pergl J., Perglova I., Jarošík V., 2006. Seasonal pattern of germination and seed longevity in the invasive species Heracleum mantegazzianum // Preslia. V. 78. № 3. P. 287–301.
  35. Mourik T.A., van, Stomph T.J., Murdoch A.J., 2005. Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks // J. Appl. Ecol. V. 42. № 2. P. 299–305. https://doi.org/10.1111/j.1365-2664.2005.01016.x
  36. Nilsson P., Tuomi J., Astrom M., 1996. Bud dormancy as a bet-hedging strategy // Am. Nat. V. 147. № 2. P. 269–281. https://doi.org/10.1086/285849
  37. Otte A., Franke R., 1998. The ecology of the Caucasian herbaceous perennial Heracleum mantegazzianum Somm. et Lev. (Giant Hogweed) in cultural ecosystems of Central Europe // Phytocoenologia. V. 28. № 2. P. 205–232. https://doi.org/10.1127/phyto/28/1998/205
  38. Ramula S., Knight T.M., Burns J.H., Buckley Y.M., 2008. General guidelines for invasive plant management based on comparative demography of invasive and native plant populations // J. Appl. Ecol. V. 45. № 4. P. 1124–1133. https://doi.org/10.1111/j.1365-2664.2008.01502.x
  39. Saatkamp A., Affre L., Dutoit T., Poschlod P., 2009. The seed bank longevity index revisited: Limited reliability evident from a burial experiment and database analyses // Ann. Bot. V. 104. № 4. P. 715–724. https://doi.org/10.1093/aob/mcp148
  40. Starrfelt J., Kokko H., 2012. Bet-hedging – a triple trade-off between means, variances and correlations // Biol. Rev. V. 87. № 3. P. 742–755. https://doi.org/10.1111/j.1469-185X.2012.00225.x
  41. Stokes P.A., 1952. Physiological study of embryo development in Heracleum sphondylium L.: II. The effect of temperature on after-ripening // Ann. Bot. V. 16. № 4. P. 571–576. https://doi.org/10.1093/oxfordjournals.aob.a083334
  42. Thompson K., Bakker J.P., Bekker R.M., 1997. The Soil Seed Bank of North West Europe: Methodology, Density and Longevity. Cambridge: Cambridge Univ. Press. 276 p.
  43. Willis S.G., Hulme P.E., 2002. Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK? // Funct. Ecol. V. 16. № 4. P. 530–539. https://doi.org/10.1046/j.1365-2435.2002.00653.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phenological spectrum of H. mantegazzianum in self-sustaining cenopopulations, heat supply of the territory with the sum of active temperatures above 5°C (CAT5) and soil temperature. Designations: 1 – dormancy and stratification of seeds, winter dormancy of plants; 2 – seed germination, development of basal leaves of plants; 3 – budding; 4 – flowering; 5 – fruiting; 6 – seed shedding, death of the aboveground part of plants. Phenophases 3–6 apply only to plants in the generative age state.

Download (153KB)
3. Fig. 2. Seasonal dynamics of photosynthetically active radiation (PAR) input to H. mantegazzianum plants. 1 – PAR intensity at a height of 250 cm above the soil surface, 2 – PAR intensity at a height of 10–15 cm above the soil surface. The average value with standard deviation is given, the figures (%) indicate the share of the luminous flux penetrating the ground layer from the total PAR input.

Download (85KB)
4. Fig. 3. The composition of the soil seed bank in H. mantegazzianum cenopopulations in autumn: a - density of empty seed coats (se0) and seeds, b - density of dead (se-) and viable (se+) seeds. Combined data for all cenopopulations for 2021-2023 are presented.

Download (130KB)
5. Fig. 4. Seasonal changes in the number of seeds, seedlings and juvenile plants of H. mantegazzianum: a - density of viable seeds and seedlings, b - density of juvenile individuals, c - relationship between seed yield and density of juvenile plants during the vegetation of the following year (median values are given). Pearson correlation r = 0.86, p = 0.0068; the 95% confidence interval is shown in dark gray. Combined data for CP 1–4 for 2021–2023 are presented.

Download (157KB)
6. Fig. 5. Variability in the habitus and morphometric parameters of H. mantegazzianum plants in the first year of life: a – vegetative plants, b – plants in a state of forced dormancy (August–September 2021).

Download (301KB)
7. Fig. 6. Dynamics of H. mantegazzianum seed germination (a) and changes in embryo length (b) during cold stratification.

Download (217KB)

Copyright (c) 2024 Russian Academy of Sciences