Synthesis of micro- and mesoporous aluminosilicates in the presence of polyethylene glycol

封面

如何引用文章

全文:

详细

Natural and synthetic aluminosilicates currently have a wide range of applications. Silicon-containing wastes of rice production are of great interest as a source of raw materials for their production. The purpose of this work is to synthesize micro- and mesoporous materials from rice husk by templat method using PEG-6000. The obtained samples were investigated by differential thermal analysis and IR spectroscopy, which showed the introduction of PEG into the structure of potassium aluminosilicate during sol-gel synthesis. The specific surface area of the samples and pore size distribution were determined by low-temperature nitrogen adsorption, according to which it was found that the pore radius increased from 100 to 200 Å during sol-gel synthesis when the PEG concentration was changed from 5 to 20 mmol/L. The study of the surface of the samples by scanning electron microscopy showed that the introduction of templat changes their surface morphology and promotes structuring.

全文:

受限制的访问

作者简介

O. Arefieva

Far Eastern Federal University; Institute of Chemistry Far-Eastern Branch of the Russian Academy of Sciences

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok; Vladivostok

S. Dovgan

Far Eastern Federal University

编辑信件的主要联系方式.
Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok

A. Kovekhova

Far Eastern Federal University; Institute of Chemistry Far-Eastern Branch of the Russian Academy of Sciences

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok; Vladivostok

A. Panasenko

Institute of Chemistry Far-Eastern Branch of the Russian Academy of Sciences

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok

M. Tsvetnov

Far Eastern Federal University

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok

A. Kozlov

Far Eastern Federal University

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok

K. Pervakov

Far Eastern Federal University

Email: dovgan.sv@dvfu.ru
俄罗斯联邦, Vladivostok

参考

  1. Hong-Tao L., Jiu-Jiang W., Fang-Ming X. et al. // Pet. Sci. 2023. V. 20. P. 1903. https://doi.org/10.1016/j.petsci.2022.11.028
  2. Nugrahaa R.E., Purnomo H., Aziz A. et al. // S. Afr. J. Chem. Eng. 2024. V. 49. P. 122. https://doi.org/10.1016/j.sajce.2024.04.009
  3. Yanga H., Han T., Yang W. et al. // J. Anal. Appl. Pyrolysis. 2022. V. 165. P. 105536. https://doi.org/10.1016/j.jaap.2022.105536
  4. Singh B.K., Bhadauria J., Tomar R. et al. // Desalination. 2022. V. 268. P. 189. https://doi.org/10.1016/j.desal.2010.10.022
  5. Singh B.K., Tomar R., Kumar S. et al. // J. Hazard. Mater. 2010. V. 178. P. 771. https://doi.org/10.1016/j.jhazmat.2010.02.007
  6. Bhadoria R., Singh B.K., Tomar R. // Desalination. 2010. V. 254. P. 192. https://doi.org/10.1016/j.desal.2009.11.016
  7. Mahinroosta M., Moattari R.M., Allahverdi A. et al. // Circ. Econ. 2024. P. 100100. https://doi.org/10.1016/j.cec.2024.100100
  8. Simancas R., Takemura M., Chen C.-T. // J. Non-Cryst. Solids. 2023. V. 605. P. 122172. https://doi.org/10.1016/j.jnoncrysol.2023.122172
  9. Шульц М.М. // Силикаты в природе и практике человека. 1997. С. 197.
  10. Sembiringa S., Simanjuntak W., Manurung P. et al. // Ceram. Int. 2014. V. 40. P. 7067. http://dx.doi.org/10.1016/j.ceramint.2013.12.038
  11. Darsanasiria A.G.N.D., Matalkahb F., Ramli S. et al. // J. Build. Eng. 2018. V. 19. P. 36. https://doi.org/10.1016/j.jobe.2018.04.020
  12. Simanjuntak W., Sembiring S., Manurung P. et al. // Ceram. Int. 2013. V. 39. P. 9369. http://dx.doi.org/10.1016/j.ceramint.2013.04.112
  13. Филиппова Е.О., Шафигулин Р.В., Виноградов К.Ю. и др. // Сорб. и хром. процессы. 2020. Т. 20. C. 696.
  14. Tretyakov Yu.D., Gudilin E.A. // Int. Sci. J. Alt. Energy Ecol. 2009. V. 6. № 74. C. 39.
  15. Глотов А.П., Ставицкая А.В., Новиков А.А. и др. // XI междунар. конф., посвященная 50-летию Института химии нефти СО РАН. Томск: Изд-во ИОА СО РАН. 2020. 65 с.
  16. Gautier C., Abdoul-Aribi N., Roux C. et al. // Colloids Surf. B: Biointerfaces. 2008. V. 65. № 1. P. 140. https://doi.org/10.1016/j.colsurfb.2008.03.005
  17. Shchipunov Y., Shipunova N. // Colloids Surf. B: Biointerfaces. 2008. V. 63. № 1. P. 7. http://doi.org/10.1016/j.colsurfb.2007.10.022
  18. Beck J.S., Vartuli J.C., Roth W.J. et al. // J. Am. Chem. Soc. 1992. V. 114. № 27. P. 10834. http://doi.org/10.1021/ja00053a020
  19. Casiraghi A., Selmin F., Minghetti P. et al. Nonionic Surfactants: Polyethylene Glycol (PEG) Ethers and Fatty Acid Esters as Penetration Enhancers. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-47039-8_15
  20. Guo W., Luo G.S., Wang Y.J. et al. // J. Colloid Interface Sci. 2004. V. 207. № 2. P. 400. https://doi.org/10.1016/j.jcis.2003.08.056 - 20
  21. Яцковская О.В., Бакланова О.Н., Гуляева Т.И. и др. // Физикохимия поверхности и защита материалов. 2013. Т. 49. № 2. С. 223.
  22. Chen G., Jiang L., Wang L. et al. // Microporous Mesoporous Mater. 2010. V. 134. № 1-3. P. 189. http://doi.org/10.1016/j.micromeso.2010.05.025
  23. Xu F., Dong M., Gou W. et al. // Microporous Mesoporous Mater. 2012. V. 163. P. 192. http://doi.org/10.1016/j.micromeso.2012.07.030
  24. Li D., Zhu X. // ACS Mater. Lett. 2011. V. 11. P. 1528. http://doi.org/10.1016/j.matlet.2011.03.011
  25. Панасенко А.Е., Борисова П.Д., Арефьева О.Д. и др. // Химия растительного сырья. 2019. № 3. С. 291. http://doi.org/10.14258/jcprm.2019034278
  26. Иконникова К.В., Иконникова Л.Ф., Минакова Т.С. и др. Теория и практика рН-метрического определения кислотно-основных свойств поверхности твердых тел: учебное пособие. Томск: Изд-во Томского политехн. ун-та, 2011.
  27. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов / Новосибирск: Издательство Сибирского отделения РАН, 1989.
  28. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. Пер. с англ. / М.: Мир, 1984.
  29. Айлер Р.К. Химия кремнезема: растворимость, полимеризация, коллоидные и поверхностные свойства, биохимия. Пер. с англ. М.: Мир, 1982.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme for obtaining potassium aluminosilicate samples in the presence of the structure-controlling agent PEG-6000.

下载 (215KB)
3. Fig. 2. SEM image of the control sample AL(K)-0.

下载 (121KB)
4. Fig. 3. SEM images of aluminosilicate samples: a – Al(K)-5; b – Al(K)-5(p).

下载 (116KB)
5. Fig. 4. SEM images of aluminosilicate samples: a – Al(K)-10; b – Al(K)-10(p).

下载 (97KB)
6. Fig. 5. SEM images of aluminosilicate samples: a – Al(K)-20; b – Al(K)-20(p).

下载 (101KB)
7. Fig. 6. Nitrogen adsorption–desorption isotherm at 77 K for the control sample Al(K)-0.

下载 (50KB)
8. Fig. 7. Nitrogen adsorption–desorption isotherms at 77 K for aluminosilicate samples: a – Al(K)-5; b – Al(K)-5(p).

下载 (113KB)
9. Fig. 8. Nitrogen adsorption–desorption isotherms at 77 K for aluminosilicate samples: a – Al(K)-10; b – Al(K)-10(p).

下载 (100KB)
10. Fig. 9. Nitrogen adsorption–desorption isotherms at 77 K for aluminosilicate samples: a – Al(K)-20; b – Al(K)-20(p).

下载 (100KB)
11. Fig. 10. Differential curve of pore volume distribution by radius of the Al(K)-0 sample.

下载 (58KB)
12. Fig. 11. Differential curves of pore volume distribution by radius of potassium aluminosilicate samples: a – Al(K)-5; b – Al(K)-10; c – Al(K)-20.

下载 (138KB)
13. Fig. 12. Differential curves of pore volume distribution by radius of potassium aluminosilicate samples: a – Al(K)-5(p); b – Al(K)-10(p); c – Al(K)-20(p).

下载 (143KB)
14. Fig. 13. Integral curves of mass loss of potassium aluminosilicate samples.

下载 (176KB)
15. Fig. 14. Differential curves of temperature change of potassium aluminosilicate samples.

下载 (181KB)
16. Fig. 15. IR spectra of potassium aluminosilicate samples: 1 – Al(K)-0; 2 – Al(K)-5(p); 3 – Al(K)-10(p); 4 – Al(K)-20(p).

下载 (193KB)
17. Fig. 16. IR spectra of potassium aluminosilicate samples: 1 – Al(K)-5; 2 – Al(K)-10; 3 – Al(K)-20.

下载 (156KB)

版权所有 © Russian Academy of Sciences, 2025