Synthesis, Structures, and Spectral Properties of Octa(2,6-difluorophenyl)tetraazaporphyrin and Its Cu(II) and Ni(II) Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Octa(2,6-difluorophenyl)tetraazaporphyrinate magnesium(II) has been treated with 96% sulfuric acid to obtain octa(2,6-difluorophenyl)tetraazaporphyrin. Coordination reactions of octa(2,6-difluorophenyl)tetraazaporphyrin and metal exchange of its magnesium complex with copper and nickel salts in dimethylformamide have been studied. Cu(II) and Ni(II) complexes with octa(2,6-difluorophenyl)tetraazaporphyrin have been synthesized. The resulting compounds have been identified by electron absorption, IR and 1H NMR spectroscopy, and mass spectrometry. The structures of the synthesized compounds were optimized by the DFT method. The fluorescence quantum yields of the studied compounds have been determined.

About the authors

A. I. Rusanov

Krestov Institute of Solutions Chemistry, Russian Academy of Sciences

Email: ngm@isc-ras.ru
153040, Ivanovo, Ivanovo oblast, Russia

N. V. Chizhova

Krestov Institute of Solutions Chemistry, Russian Academy of Sciences

Email: ngm@isc-ras.ru
153040, Ivanovo, Ivanovo oblast, Russia

A. E. Likhonina

Krestov Institute of Solutions Chemistry, Russian Academy of Sciences

Email: ngm@isc-ras.ru
153040, Ivanovo, Ivanovo oblast, Russia

N. Zh. Mamardashvili

Krestov Institute of Solutions Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: ngm@isc-ras.ru
153040, Ivanovo, Ivanovo oblast, Russia

References

  1. Mshchenko T.A., Turubanova V.D., Mitroshina E.V. et al. // Biophotonics. 2020. V. 13. P. e201960077. https://doi.org/10.1002/jbio.201960077
  2. Katoh K., Yoshida Y., Yamashita M. et al. // J. Am. Chem. Soc. 2009. V. 131. № 29. P. 9967. https://doi.org/10.1021/ja902349t
  3. Trivedi E.R., Blumenfeld C.M., Wielgos T. et al. // Tetrahedron Lett. 2016. V. 53. № 41. P. 5475. https://doi.org/10.1016/j.tetlet.2012.07.087
  4. Chen L., Zhanga Z., Wang Y. et al. // J. Mol. Catal. 2013. V. 372. P. 114. https://doi.org/10.1016/j.molcata.2013.02.013
  5. Goslinski T., Tykarska E., Kryjewski M. et al. // Anal. Sci. 2011. V. 27. P. 511. https://doi.org/10.2116/analsci.27.511
  6. Saka E.T., Çağlar Y. // Catal. Lett. 2017. V. 147. P. 1471. https://doi.org/10.1007/s10562-017-2054-0
  7. Yadav K.K., Narang U., Sahu P.K. et al. // J. Iran. Chem. Soc. 2022. V. 19. P. 4359. https://doi.org/10.1007/s13738-022-02609-5
  8. Uranga J., Matxain J.M., Lopez X. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 31. P. 20533. https://doi.org/10.1039/C7CP03319B
  9. Аскаров К.А., Березин Б.Д., Быстрицкая Е.В. Порфирины: спектроскопия, электрохимия, применение. М.: Наука, 1987. 384 с.
  10. Engeser M., Fabbrizzi L., Licchelli M. et al. // Chem. Commun. 1999. P. 1191. https://doi.org/10.1039/A901931F
  11. Lupton J.M. // Appl. Phys. Lett. 2008. V. 81. № 13. P. 2478. https://doi.org/10.1063/1.1509115
  12. Mamardashvili N.Zh., Koifman O.I. // Russ. J. Org. Chem. 2005. V. 41. № 6. P 787. https://doi.org/10.1007/s11178-005-0247-2
  13. Klapshina L.G., Douglas W.E., Grigoryev I.S. et al. // J. Mater. Chem. 2009. V. 19. № 22. P. 3668. https://doi.org/10.1039/B821667C
  14. Lermontova S.A., Grigoryev I.S., Shilyagina N.Y. et al. // Russ. J. Phys. Chem. 2016. V. 86. P. 1330. https://doi.org/10.1134/S1070363216060189
  15. Stuzhin P.A., Goryachev M.Y., Ivanova S.S. et al. // J. Porphyr. Phthalocyanines. 2013. V. 17. № 08n09. P. 905. https://doi.org/10.1142/S1088424613500892
  16. Chumakov D.E., Khoroshutin A.V., Anisimov A.V. et al. // Chem. Heterocycl. Compd. 2009. V. 45. № 3. P. 259. https://doi.org/10.1007/s10593-009-0277-8
  17. Linstead R.P., Weiss P.T. // J. Chem. Soc. 1950. V. 11. P. 2975. https://doi.org/10.1039/JR9500002975
  18. Chizhova N.V. Romanova A.O. // Rus J. Inorg. Chem. 2007. V. 52. № 11. P. 1713. https://doi.org/10.1134/S0036023607110137
  19. Cook A.H., Linstead R.P. // J. Chem. Soc. 1937. P. 929. https://doi.org/10.1039/JR9370000929
  20. Звездина С.В., Мальцева О.В., Чижова Н.В. и др. // Макрогетероциклы. 2014. Т. 7. № 3. С. 276. https://doi.org/10.6060/mhc140492m
  21. Chizhova N.V., Ivanova Y.B., Rusanov A.I. et al. // Russ. J. Org. Chem. 2019. V. 55. P. 655. https://doi.org/10.1134/S1070428019050129
  22. Lebedeva I.A., Ivanova S.S., Novakova V. et al. // J. Fluorine Chem. 2018. V. 214. P. 86. https://doi.org/10.1016/j.jfluchem.2018.08.006
  23. Rusanov A.I., Chizhova N.V., Mamardashvili N.Zh. // Molecules. 2022. V. 27. № 23. P. 8619. https://doi.org/10.3390/molecules27238619
  24. Lee N., Petrenko T., Bergmann U. et al. // J. Am. Chem. Soc. 2010. V. 132. № 28. P. 9715. https://doi.org/10.1021/ja101281e
  25. Becke A.D. // Phys. Rev. A: Gen. Phys. 1988. V. 38. № 6. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
  26. Cramer C.J. Essentials of computational chemistry: Theories and models. John Wiley & Sons, 2017. 596 p.
  27. Moran D., Simmonett A.C., Leach F.E. et al. // J. Am. Chem. Soc. 2006. V. 128. № 29. P. 9342. https://doi.org/10.1021/ja0630285
  28. Dunning Jr T.H., Hay P.J. Modern Theoretical Chemistry. N.Y.: Plenum, 1977. V. 3. 28 p.
  29. Lakowicz J.R. Principles of fluorescence spectroscopy. N.Y.: Springer, 2006. V. 26. 954 p. https://doi.org/10.6060/mhc224315m
  30. Хембрайт П. // Успехи химии. 1977. Т. 46. № 7. С. 1207. https://doi.org/10.1070/RC1977v046n07ABEH002160
  31. Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. и др. // Макрогетероциклы. 2022. Т. 15. № 2. С. 101.
  32. Maitarad P., Namuangruk S., Zhang D. et al. // Environ. Sci. Technol. 2014. V. 48. № 12. P. 7101. https://doi.org/10.1021/es405767d
  33. Fukui K., Yonezawa T., Shingu H. // J. Chem. Phys. 1952. V. 20. P. 722. https://doi.org/10.1063/1.1700523
  34. Berberan-Santos M.N. // PhysChemComm. 2000. V. 3. P. 18. https://doi.org/10.1039/b002307h
  35. Solov'ev K.N., Borisevich E.A. // Phys.-Usp. 2005. V. 48. P. 231. https://doi.org/10.1070/PU2005v048n03ABEH001761
  36. Drzewiecka-Matuszek A., Skalna A., Karocki A. et al. // J. Biol. Inorg. Chem. 2005. V. 10. P. 453. https://doi.org/10.1007/s00775-005-0652-6
  37. Rubio N., Prat F., Bou N. et al. // New J. Chem. 2005. V. 29. P. 378. https://doi.org/10.1039/B415314F

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (87KB)
3.

Download (76KB)
4.

Download (110KB)
5.

Download (60KB)
6.

Download (71KB)
7.

Download (58KB)
8.

Download (36KB)
9.

Download (419KB)

Copyright (c) 2023 А.И. Русанов, Н.В. Чижова, А.Е. Лихонина, Н.Ж. Мамардашвили