Photocatalytic oxidation of oxalic acid by oxygen and ozone in aqueous solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental study of mineralization of oxalic acid Н2С2О4 and some other oxidation-resistant organic compounds in an aqueous solution under the action of oxygen, ozone, and ultraviolet radiation is performed. It is found that in acidic solutions Н2С2О4 is not oxidized under the action of ozone or UV-irradiation in the presence of oxygen; under simultaneous action of O3 + UV, oxidation with low rate is observed. The possibility of photocatalysis of mineralization process by ions Mn2+, MnO4–, Fe3+, Со2+, BrO3–, or IO3– is studied. Fe3+ ions are the most effective photocatalyst as there is a rather fast oxidation of oxalic acid to CO2 in their presence and under UV-irradiation both under the action of O3 and O2. The conditions of maximum ozone conversion at oxalic acid photomineralization are found. The possibility of oxidative destruction of more oxidation-resistant substrate - acetic acid - at ozonation and UV-irradiation of solutions with Fe(III) and Н2С2О4 additives is shown.

Full Text

Restricted Access

About the authors

A. V. Levanov

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: levanovav@my.msu.ru

Department of Chemistry

Russian Federation, Moscow

A. V. Lapina

Branch of M. V. Lomonosov Moscow State University in Baku

Email: levanovav@my.msu.ru
Azerbaijan, Baku

O. Y. Isaikina

M. V. Lomonosov Moscow State University

Email: levanovav@my.msu.ru

Department of Chemistry

Russian Federation, Moscow

References

  1. Baird C., Cann M. Environmental Chemistry. 5 ed. New York: W.H. Freeman & Co., 2012.
  2. Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems. Boca Raton (Florida, USA): Lewis Publishers, CRC Press LLC, 2004.
  3. Lim S., Shi J.L., Von Gunten U., Mccurry D.L. // Water Res. 2022. V. 213. P. 118053.
  4. Marcì G., García-López E., Palmisano L. // J. Appl. Electrochem. 2008. V. 38. № 7. P. 1029.
  5. Bangun J., Adesina A.A. // Applied Catalysis A: General. 1998. V. 175. № 1. P. 221.
  6. Michael K.M., Rizvi G.H., Mathur J.N., Ramanujam A. // J. Radioanalyt. Nucl. Chem. 2000. V. 246. № 2. P. 355.
  7. Ganesh S., Desigan N., Chinnusamy A., Pandey N.K. // Ibid. 2021. V. 328. № 3. P. 857.
  8. Ананьев А.В., Тананаев И.Г., Шилов В.П. // Успехи химии. 2005. Т. 74. № 11. С. 1132. [Ananiev A.V., Tananaev I.G., Shilov V.P. // Russ. Chem. Rev. 2005. V. 74. № 11. P. 1039.]
  9. Von Sonntag C., Von Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications. London: IWA Publishing, 2012.
  10. Hoigné J., Bader H. // Water Res. 1983. V. 17. № 2. P. 185.
  11. Kuhn H.J., Braslavsky S.E., Schmidt R. // Pure Appl. Chem. 2004. V. 76. № 12. P. 2105.
  12. Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1953. V. 220. № 1140. P. 104.
  13. Hatchard C.G., Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1956. V. 235. № 1203. P. 518.
  14. Rabani J., Mamane H., Pousty D., Bolton J.R. // Photochem. Photobiol. 2021. V. 97. № 5. P. 873–902.
  15. Goldstein S., Rabani J. // J. Photochem. Photobiol. A. 2008. V. 193. № 1. P. 50.
  16. Леванов А.В., Исайкина О.Я., Грязнов Р.А. // Кинетика и катализ. 2022. Т. 63. № 2. С. 203. [Levanov A.V., Isaikina O.Y., Gryaznov R.A. // Kinetics and Catalysis. 2022. V. 63. № 2. P. 180.]
  17. Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427.]
  18. Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Журн. аналит. химии. 2003. Т. 58. № 5. С. 496. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // J. Anal. Chem. 2003. V. 58. № 5. P. 439.]
  19. Леванов А.В., Исайкина О.Я., Харланов А.Н. // Журн. физ. химии. 2020. Т. 94. № 11. С. 1616. [Levanov A.V., Isaikina O.Y., Kharlanov A.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 11. P. 2219.]
  20. Mao S., Chen Z., An X., Shen W. // J. Phys. Chem. A. 2011. V. 115. № 22. P. 5560.
  21. Wayne R.P. // Atmospheric Environment. 1987. V. 21. № 8. P. 1683.
  22. Bauer D., D’ottone L., Hynes A.J. // Phys. Chem. Chem. Phys. 2000. V. 2. № 7. P. 1421.
  23. Smith G.D., Molina L.T., Molina M.J. // J. Phys. Chem. A. 2000. V. 104. № 39. P. 8916.
  24. Taniguchi N., Takahashi K., Matsumi Y. // Ibid. 2000. V. 104. № 39. P. 8936.
  25. Wilkinson F., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1995. V. 24. № 2. P. 663.
  26. Biedenkapp D., Hartshorn L.G., Bair E.J. // Chem. Phys. Lett. 1970. V. 5. № 6. P. 379.
  27. Reisz E., Schmidt W., Schuchmann H.P., Von Sonntag C. // Env. Sci. Tech. 2003. V. 37. № 9. P. 1941.
  28. Sehested K., Getoff N., Schwoerer F. et al. // J. Phys. Chem. 1971. V. 75. № 6. P. 749.
  29. Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Изв. Академии наук. Сер. химическая. 2008. № 6. С. 1165. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // Russ. Chem. Bull. 2008. V. 57. № 6. P. 1187.]
  30. Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Химия высоких энергий. 2008. Т. 42. № 1. С. 5. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // High Energy Chem. 2008. V. 42. № 1. P. 1.]
  31. Zuo Y., Hoigne J. // Env. Sci. Tech. 1992. V. 26. № 5. P. 1014.
  32. Zuo Y., Hoigné J. // Atmospheric Environment. 1994. V. 28. № 7. P. 1231.
  33. Martell A.E., Smith R.M. Critical Stability Constants. V. 5. First Supplement. New York: Plenum Press, 1982.
  34. Pilz F.H., Lindner J., Vöhringer P. // Phys. Chem. Chem. Phys. 2019. V. 21. № 43. P. 23803.
  35. Pozdnyakov I.P., Kel O.V., Plyusnin V.F. et al. // J. Phys. Chem. A. 2008. V. 112. № 36. P. 8316.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experimental setup.

Download (399KB)
3. Fig. 2. Dependences of the ferrioxalate concentration in a 0.2 M H2C2O4 and 1.2 × 10–3 M Fe(III) solution on the irradiation time (λ = 254 nm, abs = 2.0 × 10–4 E l–1min–1) when passing gaseous N2 (1) or O2 (2) through the solution.

Download (165KB)
4. Fig. 3. Change in optical density at 552 nm of the solution in the trap depending on the time of treatment of the solution with 0.2 M H2C2O4abs = 2 × 10–4 E l–1min–1Cin(O3) = 28 g/m3.

Download (156KB)
5. Fig. 4. Carbon dioxide evolution rates during the treatment of a 0.2 M H2C2O4 solution with additives of various ions, oxygen and/or ozone. abs = 2.0 × 10–4 E l–1min–1, Cin(O3) = 27–30 g/m3, concentration of added ions 1 × 10–3 M.

Download (462KB)
6. Fig. 5. Dependence of the rate of CO2 evolution on the concentration of Fe(III) during UV irradiation of a 0.2 M H2C2O4 solution in an oxygen flow; 1abs = 2.0 × 10–4 E l–1min–1, 2abs = 1.0 × 10–4 E l–1min–1.

Download (128KB)
7. Fig. 6. Dependences of the rate of CO2 evolution on the concentration of acetic acid (1, 2), methyl and n-butyl alcohols (3) in the reaction solution under UV irradiation with different intensities: 1C(H2C2O4) = 0.2 M, C(Fe(III) = 1.0 × 10–3 M, abs = 2.0 × 10–4 E l–1min–1; 2, 3C(H2C2O4) = 0.2 M, C(Fe(III) = 1.5 × 10–3 M, abs = 5.0 × 10–5 E l–1min–1.

Download (150KB)
8. Fig. 7. Dependences of the rate of CO2 evolution on the ozone concentration in the initial gas mixture at different concentrations of oxalic acid in the solution (C(Fe(III) = 1.5 × 10–3 M; abs = 6.0 × 10–5 E l–1min–1): 1C(H2C2O4) = 0.01 M, 2C(H2C2O4) = 0.05 M, 3C(H2C2O4) = 0.1 M, 4C(H2C2O4) = 0.2 M.

Download (161KB)
9. Fig. 8. Dependence of the rate of CO2 evolution on the ozone concentration in the initial gas mixture at different intensities of UV radiation (C(H2C2O4) = 0.2 M; C(Fe(III) = 1.5 × 10–3 M): 1abs = 1 × 10–4 E l–1min–1, 2abs = 7 × 10–5 E l–1min–1, 3abs = 6 × × 10–5 E l–1min–1.

Download (125KB)
10. Fig. 9. Dependences of the rate of CO2 evolution on the concentration of oxalic acid in the reaction solution at different ozone concentrations in the initial gas mixture (C(Fe(III) = 1.5 × 10–3 M; abs = 6 × 10–5 E l–1min–1): 1Cin(O3) = 0, 2Cin(O3) = 9.8 g/m3, 3Cin(O3) = 20.5 g/m3, 4Cin(O3) = 29.7 g/m3.

Download (155KB)
11. Fig. 10. Dependences of the ratio (r(CO2) – r(CO2) С(О3)=0) / r(O3) on the concentration of oxalic acid in the reaction solution at different ozone concentrations in the initial gas mixture (C(Fe(III) = 1.5 × 10–3 M; abs = 6 × 10–5 E l–1min–1): 1Cin(O3) = 9.8 g/m3, 2Cin(O3) = 20.5 g/m3, 3Cin(O3) = 29.7 g/m3.

Download (155KB)
12. Fig. 11. Dependences of the rate of CO2 evolution on the concentration of acetic acid in the reaction solution during ozonation and UV irradiation with different intensities: 1C(H2C2O4) = 0.2 M, C(Fe(III) = 1.0 × 10–3 M; abs = 2 × 10–4 E l–1min–1, Cin(O3) = 27.5 g/m3; 2C(H2C2O4) = 0.2 M, C(Fe(III) = 1.5 × 10–3 M; abs = 6 × 10–5 E l–1min–1, Cin(O3) = 29.7 g/m3.

Download (107KB)
13. Fig. 12. The amount of carbon dioxide formed during treatment with ozone (Cin(O3) = 30.0 g/m3) and UV radiation (abs = 6 × 10–5 E l–1min–1) of 395 ml of a solution with concentrations of C2С2О4) = 0.01 M, C(СН3СООН) = 0.13 M, C(Fe(III) = 1.5 × 10–3 M.

Download (85KB)

Copyright (c) 2025 Russian Academy of Sciences