Towards a semi-empirical analysis of exchange interactions in metalorganic frameworks with open d-shell ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The MagAîxTic program package based on the theory of effective Hamiltonian for crystal field and designed to estimate parameters of effective exchange between magnetic moments localized in the d-shells is augmented by the smaller ferromagnetic contributions to those parameters. The updated package is tested on the example of the three-nuclear basic acetates of iron(III) and chromium(III) of the composition μ3-OM3(CH3COO)6, as well as of their mixed analogs. It is shown that the developed/upgraded package is capable to reproduce both the orders of magnitude of the exchange parameters in the range of dozens cm-1 and their trends upon transition from one metal to another.

全文:

受限制的访问

作者简介

A. Tchougréeff

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tchougreeff@phyche.ac.ru
俄罗斯联邦, Moscow, 119071

参考

  1. Li J.R., Kuppler R.J., Zhou H.C. // Chem. Soc. Rev. 2009. V. 38. P. 1477.
  2. Liu J., Chen L., Cui H. et al. // Ibid. 2014. V. 43. P. 6011.
  3. Zhou H.-C.J., Kitagawa S. // Ibid. 2014. V. 43. P. 5415.
  4. Fischer R., Kaskel S., Kitagawa S. // Microporous and Mesoporous Materials. 2015. V. 216. P. 1.
  5. Li H., Wang K., Sun Y. et al. // Materials Today. 2018. V. 21. P. 108.
  6. Jiao L., Wang Y., Jiang H.L., Xu Q. // Adv. Mater. 2018. V. 30.
  7. Safaei M., Foroughi M.M., Ebrahimpoor N. et al. // TrAC – Trends in Anal. Chem. 2019. V. 118. P. 401.
  8. Coronado E., Espallargas G.M. // Chem. Soc. Rev. 2013. V. 42. P. 1525.
  9. Берсукер И.Б. Электронное строение и свойства координационных соединений: Введение в теорию. 3-е изд., перераб. и доп. Л.: Химия, Лен. отд., 1986.
  10. Navarro J.A.R., Barea E., Rodríguez-Diéguez A. et al. // J. of the Amer. Chem. Soc. 2008. V. 130. P. 3978.
  11. Mínguez Espallargas G. and Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
  12. Horcajada P., Surblé S., Serre C. et al. // Chem. Commun. 2007. P. 2820–2822.
  13. Momma K., Izumi F. // J. of App. Crystallogr. 2011. V. 44. P. 1272.
  14. Sciortino L., Alessi A., Messina F. et al. // The J. of Phys. Chem. C. 2015. V. 119. P. 7826–7830.
  15. Koch W., Holthausen M. A Chemist’s Guide to Density Functional Theory, v. 2. Wiley-VCH, Weinheim, 2002.
  16. Chung Y., Camp J., Haranczyk M. et al. // Chem. of Mater. 2014. V. 26. P. 6185.
  17. Chung Y.G., Gómez-Gualdrón D.A., Li P. et al. // Sci. Adv. 2016. V. 2.
  18. Gómez-Gualdrón D., Colón Y., Zhang X. et al. // En. Envir. Sci. 2016. V. 9. P. 3279.
  19. Colón Y., Gómez-Gualdrón D., Snurr R. // Growth Des. 2017. V. 17. P. 5801.
  20. Colón Y., Snurr R. // Chem. Soc. Rev. 2014. P. 5735.
  21. First E.L., Floudas C.A. // Microporous and Mesoporous Materials. 2013. V. 165. P. 32.
  22. Gounaris C., Wei J., Floudas C. et al. // AIChE J. 2009. V. 56. P. 611.
  23. Glover J., Besley E. // Faraday Discussions. 2021. V. 231. P. 235.
  24. Burkert U., Allinger N.L. Molecular mechanics. Washington: ACS, 1982.
  25. Leach A. Molecular Modelling: Principles and Applications, 2. Prentice Hall, Harlow, 2001.
  26. Frenkel D. Understanding molecular simulation: from algorithms to applications, 2007.
  27. Rappé A., Goddard III W. // J. Phys. Chem. 1991. V. 95. P. 3358.
  28. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. P. 15.
  29. Gonze X. // Comput. Phys. Commun. 2009. V. 180. P. 2582.
  30. Giannozzi P., Baroni S., Bonini N. et al. // J. of Phys.: Condens. Matter. 2009. V. 21. P. 395502.
  31. Schwarz K., Blaha P. // Comput. Mater. Sci. 2003. V. 28. P. 259.
  32. Hutter J., Iannuzzi M., Schiffmann F., Vandevondele J. // WIREs Comput. Mol. Sci. 2014. V. 4. P. 15.
  33. Nazarian D., Camp J.S., Chung Y.G. et al. // Chem. of Mater. 2016. V. 29. P. 2521.
  34. Ruiz E., Cano J., Alvarez S., Alemany P. // J. of Comput. Chem. 1999. V. 20. P. 1391.
  35. Ruiz E., Llunell M., Alemany P. // J. Sol. State. Chem. 2003. V. 176. P. 400.
  36. Ruiz E. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry II / Ed. by N. Kaltsoyannis, J. McGrady. Springer-Verlag, 2004. V. 113 of Structure and Bonding, p. 71–102.
  37. Mavrandonakis A., Vogiatzis K.D., Boese A.D. et al. // Inorg. Chem. 2015. V. 54. P. 8251.
  38. Blake A.B., Yavari A., Hatfield W.E., Sethulekshmi C.N. // J. of the Chem. Soc. Dalton Transactions. 1985. P. 2509.
  39. Plekhanov E., Tchougr´eeff A., and Dronskowski R. // Comp. Phys. Comm. 2019. P. 107079.
  40. Plekhanov E., Tchougréeff A. // Comp. Mat. Sci. 2021. V. 188. P. 110140.
  41. Tchougréeff A., Plekhanov E., Dronskowski R. // J. Comp. Chem. 2021. V. 42. P. 1498.
  42. Epifanovsky E., Gilbert A.T.B., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A.F., Coons M.P., Dempwolff A.L. et al. // The J. of Chem. Phys. 2021. V. 155.
  43. Lee H., Lee H., Ahn S., Kim J. // ACS Omega. 2022. V. 7. P. 21145.
  44. Zhang M., Wang W., Chen Y. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 2211.
  45. Anderson P. // Sol. St. Phys. 1963. V. 14. P. 99.
  46. Soudackov A.V., Tchougreeff A.L., Misurkin I.A. // Theor. Chim. Acta. 1992. V. 83. P. 389.
  47. Tchougréeff A.L., Soudackov A.V., van Leusen J. et al. // Int. J. of Quant. Chem. 2016. V. 116. P. 282.
  48. Tchougréeff A.L., Soudackov A.V. // Russ. J. of Phys. Chem. A. 2014. V. 88. P. 1904.
  49. Popov I., Plekhanov E., Tchougréeff A., Besley E. // Mol. Phys. 2023. V. 121. e2106905.
  50. Popov I., Raenko D., Tchougréeff A., Besley E. // J. of Phys. Chem. C. 2023. V. 127. P. 21749.
  51. Tchougreeff A.L., Dronskowski R. // J. of Phys. Chem. A. 2013. V. 117. P. 7980.
  52. Goodenough J. Magnetism and the Chemical Bond. Interscience-Wiley, New York, 1963.
  53. Вонсовский С.В. Магнетизм. М.: Наука, 1984.
  54. Tchougréeff A. Effective Hamiltonian Crystal Field for Magnetic Interactions in Polynuclear Transition Metal Complexes. Sequential Derivation and Exemplary Numerical Estimates. 2013. URL https://arxiv.org/abs/1301.1036
  55. Löwdin P.-O. // J. of Math. Phys. 1962. V. 3. P. 969.
  56. Weihe H., Güdel H.U., Toftlund H. // Inorg. Chem. 2000. V. 39. P. 1351.
  57. Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
  58. Kasuya T. // Progress of Theor. Phys. 1956. V. 16. P. 45.
  59. Yosida K. // Phys. Rev. 1957. V. 106. P. 893.
  60. Van Vleck J.H. // Rev. of Mod. Phys. 1962. V. 34. P. 681.
  61. Long G.J., Robinson W.T., Tappmeyer W.P, Bridges D.L. // J. Chem. Soc., Dalton Trans. 1973. P. 573–579.
  62. Pople J.A., Beveridge D.L. Approximate Molecular Orbital Theory. McGraw-Hill Book, New York, 1970.
  63. Sinitsky A.V., Darhovskii M.B., Tchougreeff A.L., Misurkin I.A. // Int. J. of Quant. Chem. 2002. V. 88. P. 370.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the [m3-OM3(CH3COO)6(H2O)3]+ ion. The figure was prepared using the VESTA 3 program [13].

下载 (319KB)
3. Fig. 2. Structure of the 1,3,5-benzene tricarbonate trianion – BTC – linker in the MIL-100 class MOF. The figure was prepared using the VESTA 3 program [13].

下载 (201KB)
4. Fig. 3. Mutual orientation of magnetic moments localized in the d-shells of transition metal ions in potentially frustrated geometry. The figure was prepared using the VESTA 3 program [13].

下载 (296KB)

版权所有 © Russian Academy of Sciences, 2025