Сравнительная скелетотопия поясничного отдела спинного мозга млекопитающих

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Спинной мозг — наиболее филогенетически древнее образование центральной нервной системы. Более быстрый рост позвоночника по отношению к спинному мозгу в онтогенезе приводит к тому, что у взрослых млекопитающих некоторые сегменты спинного мозга смещены рострально по отношению к одноименным позвонкам, что называют восхождением спинного мозга. На основе литературных данных проводили сравнение скелетотопии поясничного отдела спинного мозга 17-и видов млекопитающих. У 4-х видов также проводили сравнение скелетотопии новорожденных и взрослых животных. Определяли отношение длины сегмента L2 к длине позвонка VL2 и номер позвонка, в котором находится 29-й сегмент спинного мозга, характеризующие степень восхождения. На основе литературных данных определялись часто используемые в сравнительных исследованиях характеристики: ловкость пальцев и коэффициент энцефализации. Показано, что различные виды в большей степени отличаются между собой относительной длиной верхних поясничных сегментов, а в рамках одного вида новорожденные отличаются от взрослых особей относительной длиной нижних поясничных сегментов. Для большинства видов степень восхождения спинного мозга значимо положительно коррелирует с ловкостью пальцев и коэффициентом энцефализации. Рассмотренные макроанатомические характеристики спинного мозга могут быть использованы для анализа взаимосвязей адаптационных механизмов у различных видов млекопитающих.

Полный текст

Доступ закрыт

Об авторах

П. Ю. Шкорбатова

Институт физиологии им. И.П. Павлова РАН

Email: merkulyevan@infran.ru
Россия, Санкт-Петербург

В. А. Ляховецкий

Институт физиологии им. И.П. Павлова РАН

Email: merkulyevan@infran.ru
Россия, Санкт-Петербург

А. А. Вещицкий

Институт физиологии им. И.П. Павлова РАН

Email: merkulyevan@infran.ru
Россия, Санкт-Петербург

Н. С. Меркульева

Институт физиологии им. И.П. Павлова РАН

Автор, ответственный за переписку.
Email: merkulyevan@infran.ru
Россия, Санкт-Петербург

Список литературы

  1. Kayalioglu G (2009) “The spinal nerves” in The spinal cord, eds C. Watson, G. Paxinos, and G. Kayalioglu (Amsterdam: Elsevier), 238–306. https://doi.org/10.1016/B978-0-12-374247-6.50019-5
  2. Hazıroğlu RM, Öcal MK (1988) Comparative morphological studies on the spinal cord of the donkey. II. The topography of the segments. A U Vet Fak Derg 35: 476–487.
  3. Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76.
  4. Maierl J, Liebich HG (1998) Investigations on the postnatal development of the macroscopic proportions and the topographic anatomy of the feline spinal cord. Anatomia Histologia Embryologia 27: 375–379. https://doi.org/10.1111/j.1439-0264.1998.tb00210.x
  5. Canbay S, Gürer B, Bozkurt M, Comert A, Izci Y, Başkaya MK (2014) Anatomical relationship and positions of the lumbar and sacral segments of the spinal cord according to the vertebral bodies and the spinal roots. Clin Anat 27: 227–233. https://doi.org/
  6. Shkorbatova PY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. Anat Rec (Hoboken). 302: 1628–1637. https://doi.org/10.1002/ar.24054
  7. Shkorbatova PY, Lyakhovetskii VA, Veshchitskii AA, Bazhenova EY, Pavlova NV, Musienko PE, Merkulyeva NS (2023) Postnatal growth of the lumbosacral spinal segments in cat: Their lengths and positions in relation to vertebrae. Anat Rec (Hoboken) 306: 831–843. https://doi.org/10.1002/ar.24945
  8. Toossi A, Bergin B, Marefatallah M, Parhizi B, Tyreman N, Everaert DG, Rezaei S, Seres P, Gatenby JC, Perlmutter SI, Mushahwar VK (2021) Comparative neuroanatomy of the lumbosacralspinal cord of the rat, cat, pig, monkey, and human. Sci Rep 11: 1955. https://doi.org/10.1038/s41598-021-81371-9
  9. Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. In JC Eccles JP Schadé (Eds.), Progress in brain research: 1–57. Elsevier.
  10. Sakla FB (1969) Quantitative studies on the postnatal growth of the spinal cord and the vertebral column of the albino mouse. J Comp Neurol 136: 237–251. https://doi.org/10.1002/cne.901360209
  11. Ghazi SR, Gholami S (1994) Allometric growth of the spinal cord in relation to the vertebral column during prenatal and postnatal life in the sheep (Ovis aries). J Anat 185: 427–431.
  12. Lüderitz C (1881) Über das rückenmarkssegment. Ein beitrag zur morphologie und histologie des rückenmarks. Archiv Anat Physiol 8: 423–495.
  13. Лебедкин СИ (1936) Изменение длины спинного мозга и осевого скелета в течение развития у человека и у свиньи. Изв научного ин-та им ПФ Лесгафта XX: 13–94. [Lebedkin SI (1936) Changes in the length of the spinal cord and axial skeleton during development in humans and pigs. Izv nauchnogo in-ta im PF Lesgafta. XX: 13–94. (In Russ).].
  14. Лебедкин СИ (1937) Спинной мозг ежа и некоторых млекопитающих. К вопросу об образовании конского хвоста / Сборник, посвященный памяти М.А. Мензибра. М.-Л.: 261–290. [Lebedkin SI (1937) Spinal cord of the hedgehog and some mammals. On the issue of the formation of the cauda equina / Sbornik, posvyashchennyy pamyati M.A. Menzibra. M.-L.: 261–290. (In Russ).].
  15. Malinska J, Kapoun S, Malinsky J (1972) Topography of the spinal cord in the East Central European hedgehog (Erinaceus roumanicus centroeuropaeus). Folia Morphologica 10: 182–184.
  16. Козельская ЛА (1980) Топография сегментов и ядер спинного мозга у лабораторных животных (Морфологическое исследование). Дисс. на соиск. степ. к. б.н. Смоленск — Чита. 279 с. [Kozelskaya LA (1980) Topography of segments and nuclei of the spinal cord in laboratory animals (Morphological study). PhD Thesis. Smolensk — Chita. 279 p. (In Russ).].
  17. Darwin CR (1871) The Descent of man, and selection in relation to sex (Vol. 1). John Murray, Albemarle Street, London, UK.
  18. Boddy AM, McGowen MR, Sherwood CC, Grossman LI, Goodman M, Wildman DE (2012) Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J Evol Biol 25: 981–994. https://doi.org/10.1111/j.1420–9101.2012.02491.x
  19. Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12: 161–200. https://doi.org/10.1159/000124401
  20. Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract. J Comp Neurol. 296: 584–597. https://doi.org/10.1002/cne.902960406
  21. Garwicz M, Christensson M, Psouni E (2009) A unifying model for timing of walking onset in humans and other mammals. Proc Natl Acad Sci USA 106:21889–21893. https://doi.org/10.1073/pnas.0905777106
  22. MacLarnon A (1995) The distribution of spinal cord tissues and locomotor adaptation in primates. J Hum Evol 29: 463–482.https://doi.org/10.1006/jhev.1995.1069
  23. Ashwell KW, Shulruf B (2014) Spinal cord development in marsupials in relation to birthing strategies and in comparison, with monotremes and the laboratory rat. Somatosens Mot Res 31: 152–165. https://doi.org/10.3109/08990220.2014.907150
  24. MacLarnon A (1996) The scaling of gross dimensions of the spinal cord in primates and other species. J Hum Evol 30: 71–87.https://doi.org/10.1006/jhev.1996.0005
  25. Burish MJ, Peebles JK, Baldwin MK, Tavares L, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for primate spinal cords. Brain Behav Evol 76: 45–59. https://doi.org/10.1159/000319019
  26. Шкорбатова ПЮ, Ляховецкий ВА, Вещицкий АА, Меркульева НС (2020) Эволюционные аспекты восхождения спинного мозга млекопитающих. Журн эвол физиол биохим 56: 719. [Shkorbatova PYu, Lyakhovetskii VA, Veshchitskii AA, Merkulyeva NS (2020) Evolutionary aspects of the ascension of the spinal cord in mammals. J Evol Fiziol Biokhim 56: 719. (In Russ)].
  27. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O'Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-Mizrachi I (2020) NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). https://doi.org/10.1093/database/baaa062
  28. Malinska J, Hubackova E, Malinsky J (1976) A topographical and quantitative anatomical study of the spinal cord in the mole. Acta University Palacky Olomus Faculty Med. 76: 169–178.
  29. Gilerovich EG, Moshonkina TR, Fedorova EA, Shishko TT, Pavlova NV, Gerasimenko YP, Otellin VA (2008) Morphofunctional characteristics of the lumbar enlargement of the spinal cord in rats. Neurosci Behav Physiol 38: 855–860. https://doi.org/10.1007/s11055-008-9056-8
  30. Бурдей ГД (1960) Морфология и скелетотопия элементов спинного мозга некоторых экспериментальных животных. Труды Сарат мед ин-та XXXI: 289–317. [Burdey GD (1960) Morphology and skeletopy of elements of the spinal cord of some experimental animals. Trudy Sarat med in-ta XXXI: 289–317. (In Russ)].
  31. Илюшина ИА (2002) Возрастная морфология и скелетотопия спинного мозга и его твердой оболочки у норки и песца клеточного содержания в раннем постнатальном онтогенезе. Дисс. на соиск. степ. к. б.н. М. 177 с. [Ilyushina IA (2002) Age-related morphology and skeletotopy of the spinal cord and its dura mater in mink and arctic fox cage content in early postnatal ontogenesis. PhD Thesis. M. 177 p. (In Russ)].
  32. Щербакова АА (1962) К морфологии и скелетотопии корешков спинномозговых нервов у тюленя. Труды Ростовского мед ин-та 17: 63–73. [Shcherbakova AA (1962) K morfologii i skeletotopii koreshkov spinnomozgovykh nervov u tyulenya [On the morphology and skeletotopy of the spinal nerve roots in the seal]. Trudy Rostovskogo med in-ta 17: 63–73 (In Russ)].
  33. Cuellar CA, Mendez AA, Islam R, Calvert JS, Grahn PJ, Knudsen B, Pham T, Lee KH, Lavrov IA (2017) The role of functional neuroanatomy of the lumbar spinal cord in effect of epidural stimulation. Frontiers in Neuroanatomy. 11: 82. https://doi.org/10.3389/fnana.2017.00082
  34. Sisson S, Grossman JD, Getty R (1975) Sisson and Grossman's The anatomy of the domestic animals. V. 1. Philadelphia: Saunders, 1975.
  35. Goffart M, Gerebtzoff MA (1965) Spinal roots in the sloth. Nature. 206: 1062–1063. https://doi.org/10.1038/2061062a0
  36. Goffart M, Gerebtzoff MA, Duchesne PY (1967) The spinal roots in the sloth (Choloepus hoffmanni Peters). J Comp Neurol. 131: 393–403. https://doi.org/10.1002/cne.901310309
  37. Voris HC (1928) The morphology of the spinal cord of the virginian opossum (Didelphis virginiana). J Comp Neurol. 46: 407–459. https://doi.org/10.1002/cne.900460203
  38. Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot JB, Buse N, Gandar J, Barraud Q, Xing D, Rey E, Duis S, Jianzhong Y, Ko WK, Li Q, Detemple P, Denison T, Micera S, Bezard E, Bloch J, Courtine G (2016) A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539: 284–288. https://doi.org/10.1038/nature20118
  39. Бурдей ГД (1984) Спинной мозг. Саратов: СГУ. 263 c. [Burdey GD (1984) Spinal cord. Saratov: SGU. 263 p. (In Russ)].
  40. Mendez A, Islam R, Latypov T, Basa P, Joseph OJ, Knudsen B, Siddiqui AM, Summer P, Staehnke LJ, Grahn PJ, Lachman N, Windebank AJ, Lavrov IA (2021) Segment-specific orientation of the dorsal and ventral roots for precise therapeutic targeting of human spinal cord. Mayo Clin Proc 96: 1426–1437. https://doi.org/10.1016/j.mayocp.2020.07.039
  41. Бурдей ГД (1960) Топографоанатомические особенности сегментов спинного мозга новорожденных и у детей первого года жизни. Труды Сарат мед ин-та XXXI: 276–289. [Burdey GD (1960) Topographic-anatomical features of the spinal cord segments of newborns and children of the first year of life. Trudy Sarat med in-ta XXXI: 276–289 (in Russ)].
  42. Gittleman JL (1986) Carnivore brain size, behavioral ecology, and phylogeny. J Mammalogy 67: 23–36. https://doi.org/10.2307/1380998
  43. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cognitive Sci 9: 250–257. https://doi.org/10.1016/j.tics.2005.03.005
  44. Iwaniuk AN, Pellis SM, Whishaw IQ (1999) Is digital dexterity really related to corticospinal projections?: a re-analysis of the Heffner and Masterton data set using modern comparative statistics. Behav Brain Res 101: 173–187. https://doi.org/10.1016/S0166-4328(98)00151-X
  45. Lemon RN, Griffiths J (2005) Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle & Nerve. 32: 261–279. https://doi.org/10.1002/mus.20333
  46. Gupta BB (1961) Investigations of the rolling mechanism in the indian hedgehog. J Mammal 42: 365–371. https://doi.org/10.2307/1377033
  47. Порсева ВВ, Шилкин ВВ (2016) Строение серого вещества спинного мозга: неопределенности и перспективы исследования. Тихоокеанск мед журн 64: 20–30. [Porseva VV, Shilkin VV (2016) The structure of the gray matter of the spinal cord: uncertainties and research prospects. Tikhookeansk Med Zhurn 64: 20–30 (In Russ)].
  48. Leijnse JN, D'Herde K (2016) Revisiting the segmental organization of the human spinal cord. J Anat 229: 384–393. https://doi.org/10.1111/joa.12493
  49. Carpenter EM (2002) Hox genes and spinal cord development. Dev Neurosci 24: 24–34. https://doi.org/10.1159/000064943
  50. Watson C, Sengul G, Tanaka I, Rusznak Z, Tokuno H (2015) The spinal cord of the common marmoset (Callithrix jacchus). Neurosci Res 93: 164–175. https://doi.org/10.1016/j.neures.2014.12.012
  51. Romanes GJ (1964) The motor pools of the spinal cord. Prog Brain Res 11: 93–119. https://doi.org/10.1002/10.1016/s0079-6123(08)64045-5
  52. Erickson CA, Perris R (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Developmental Biology 159: 60–74. https://doi.org/10.1006/dbio.1993.1221
  53. Gerasimenko YP, Makarovskii AN, Nikitin OA (2002) Control of locomotor activity in humans and animals in the absence of supraspinal influences. Neurosci Behav Physiol 32: 417–423. https://doi.org/10.1023/a:1015836428932
  54. Ko H-Y, Park JH, Shin YB, Baek SY (2004) Gross quantitative measurements of spinal cord segments in human. Spinal Cord 42: 35–40. https://doi.org/10.1038/sj.sc.3101538
  55. Журавлева ЛД (1979) Возрастная скелетотопия и морфология спинного мозга свиньи. Дисс. на соиск. степ. к. б.н. Ульяновск. 200 с. [Zhuravleva LD (1979) Age-related skeletotopy and morphology of the pig spinal cord. PhD Thesis. Ulyanovsk. 200 p. (In Russ)].
  56. Istaith AR (1975) Vertebromedullary topography and its postnatal changes in the rat. Folia Morphologica 23: 397–403.
  57. Rao GS, Kalt DJ, Koch M, Majok AA (1993) Anatomical studies on the spinal cord segments of the impala (Aepyceros melampus). Anatom Histol Embryol 22: 273–278. https://doi.org/
  58. Barson AJ (1970) The vertebral level of termination of the spinal cord during normal and abnormal development. J Anatom 106: 489–497.
  59. Wolf S, Schneble F, Tröger J (1992) The conus medullaris: Time of ascendence to normal level. Pediatric Radiol 22: 590–592. https://doi.org/10.1007/BF02015359
  60. Van Schoor ANV, Bosman MC, Bosenberg AT (2015) Descriptive study of the differences in the level of the conus medullaris in four different age groups. Clin Anatom 28: 638–644. https://doi.org/10.1002/ca.22505
  61. Ghazi SR, Gholami S (1993) Changes in the termination of spinal cord at vertebral levels during pre- and postnatal development of sheep. J Appl Animal Res 4: 61–66.
  62. Gholami S, Ghazi SR, Khaksar Z (1997) Postnatal changes of termination of the spinal cord in camel (Camelus dromedarius). J Appl Animal Res 11: 69–72. https://doi.org/10.1080/09712119.1997.9706162
  63. Соболевский ЕИ (1978) Сравнительная анатомия спинного мозга полуводных, водных и наземных млекопитающих. Архив анатомии, гистологии и эмбриологии. LXXV: 74–80. [Sobolevskii EI (1978) Comparative anatomy of the spinal cord in semiwater, water and terrestrial mammals. Arkhiv anatomii, gistologii i embriologii. LXXV: 74–80. (In Russ)].
  64. Hines M, Emerson BM (1951) Development of the spinal cord in the fetal and infant macaque, 1. Growth as increase in size. In Contributions to embryology (Vol. 34, pp. 1–18). Carnegie Institution of Washington.
  65. Mellström A, Skoglund S (1969) Quantitative morphological changes in some spinal cord segments during postnatal development. A study in the cat. Acta Physiol Scandinavica 331: 1–84.
  66. Фасахутдинова АН, Симанова НГ, Хохлова СН (2015) Морфогенез спинного мозга кролика. Ученые записки КГАВМ им. Н. Э. Баумана. 2: 229–233. [Fasakhutdinova AN, Simanova NG, Khokhlova SN (2015) Morphogenesis of the rabbit spinal cord. Uchenyye zapiski KGAVM im. N. E. Baumana. 2: 229–233. (In Russ)].
  67. Писалева СГ, Фасахутдинова АН (2008) Возрастные особенности скелетотопии спинного мозга собаки и кролика. Известия ОГАУ 20: 117–118. [Pisaleva SG, Fasakhutdinova AN (2008) Age-related features of skeletotopy of the spinal cord of dogs and rabbits. Izvestiya OGAU20: 117–118 (In Russ)].
  68. Maya S, Chungath JJ, Harshan KR, Ashok N (2008) Regional growth of spinal cordand vertebral column in goat foetuses. Indian J Animal Res 42: 164–170.
  69. Arthurs OJ, Thayyil S, Wade A, Chong WK, Sebire NJ, Taylor AM, Magnetic resonance imaging autopsy study collaborative group (2013) Normal ascent of the conus medullaris: a post-mortem foetal MRI study. J Matern Fetal Neonatal Med 26: 697–702. https://doi.org/10.3109/14767058.2012.746307
  70. Vettivel S (1991) Vertebral level of the termination of the spinal cord in human fetuses. J Anat 179: 149–161.
  71. Меньщикова ИА, Кирсанов КП, Мельников НМ (2001) Морфометрия спинного мозга и позвоночного канала экспериментальных животных (собака). Гений Ортопедии. 3: 50–52. [Menshchikova IA, Kirsanov KP, Melnikov NM (2001) Morphometry of the spinal cord and spinal canal of experimental animals (dog). Geniy Ortopedii. 3: 50–52. (In Russ)].
  72. Jones KE, German RZ (2014) Ontogenetic allometry in the thoracolumbar spine of mammal species with differing gait use. Evol Dev 16: 110–120. https://doi.org/10.1111/ede.12069
  73. Li K, Sun X, Chen M, Sun Y, Tian R, Wang Z, Xu S, Yang G (2018) Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications. Integr Zool 13: 21–35. https://doi.org/10.1111/1749-4877.12271
  74. Galis F, Carrier DR, van Alphen J, van der Mije SD, Van Dooren TJ, Metz JA, ten Broek CM (2014) Fast running restricts evolutionary change of the vertebral column in mammals. Proc Natl Acad Sci U S A 111: 11401–11406. https://doi.org/10.1073/pnas.1401392111
  75. Maya S, Sreeranjini AR, Leena C, Sunilkumar NS, Sumena KB, Irshad A (2020) Developmental morphometry and allometry of spinal cord. J Food Animal Sci 01: 7–12. https://doi.org/10.51128/jfas.2020.A002
  76. Ghazi SR, Gholami S (1993) A study of the length of the spinal cord in pre- and postnatal life in Mehraban sheep (Ovis Aries). Vet Res Commun 174;17–420. https://doi.org/10.1007/BF01839209
  77. Ashwell KW, Zhang LL (1997) Cyto- and myeloarchitectonic organisation of the spinal cord of an echidna (Tachyglossus aculeatus). Brain Behav Evol 49: 276–294. https://doi.org/10.1159/000112998
  78. Imam A, Ajao MS, Bhagwandin A, Ihunwo AO, Manger PR (2017) The brain of the tree pangolin (Manis tricuspis). I. General appearance of the central nervous system. J Comp Neurol 525: 2571–2582. https://doi.org/10.1002/cne.25353
  79. Ashwell KW (2013) Peripheral nervous system, spinal cord, brainstem and cerebellum. In K. W. Ashwell (Ed.), Neurobiology of monotremes: Brain evolution in our distant mammalian cousins (pp. 69–105). Csiro Publishing.
  80. Ridgway SH (2012) The central nervous system of the bottlenose dolphin. In S. Leatherwood & R. R. Reeves (Eds.), The bottlenose dolphin (pp. 69–97). Elsevier.
  81. Seki Y (1958) Observations on the spinal cord of the right whale. Sci Rep Whales Res Inst 3: 231–251.
  82. Machado GV, Lesnau GG, Birck AJ (2003) Topografia do cone medular no lobo marinho (Arctocephalus australis Zimmermann, 1783). Arquivos de Ciências Veterinarias e Zoologia da UNIPAR6: 11–14.
  83. Kapoun S, Malinska J, Zrzavy J (1973) Anatomical peculiarities of the spinal cord in some Insectivora and Chiroptera. Folia Morphol 21: 136–138.
  84. Neuweiler G (2000) The biology of bats. Oxford University Press.
  85. Uehara M, Hosaka YZ, Doi H, Sakai H (2015) The shortened spinal cord in tetraodontiform fishes. J Morphol 276: 290–300. https://doi.org/10.1002/jmor.20338
  86. Sánchez SS, Sánchez RS (2021) Delineating the anuran axial skeleton. Int J Dev Biol 65:177–186. https://doi.org/10.1387/ijdb.200230ss
  87. Chang HT, Ruch TC (1947) Morphology of the spinal cord, spinal nerves, caudal plexus, tail segmentation, and caudal musculature of the spider monkey. The Yale J Biol Med 19: 345–377.
  88. de Souza Terra DR, Sabec-Pereira DK, Lima FC, Melo FCSA, Melo FR, Pereira KF (2018) Anatomy of the spinal cord of Alouatta belzebul. Acta Veterinar Brasil 12: 55–61.
  89. Economides KD, Zeltser L, Capecchi MR (2003) Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev Biol. 256: 317–330. https://doi.org/10.1016/s0012-1606(02)00137-9
  90. Lin AW, Carpenter EM (2003) Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning. J Neurobiol 56: 328–337. https://doi.org/10.1002/neu.10239
  91. Wu Y, Wang G, Scott SA, Capecchi MR (2008) Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons. Development 135: 171–182. https://doi.org/10.1242/dev.009225
  92. Sears K, Maier JA, Sadier A, Sorensen D, Urban DJ (2017) Timing the developmental origins of mammalian limb diversity. Genesis. e23079. https://doi.org/10.1002/dvg.23079
  93. Gross C, Ellison B, Buchman AS, Terasawa E, Vander Horst VG (2017) A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology. PLoS One 12: e0177243.https://doi.org/10.1371/journal.pone.0177243
  94. Takahashi Y, Ohtori S, Takahashi K (2010) Somatotopic organization of lumbar muscle-innervating neurons in the ventral horn of the rat spinal cord. J Anat 216: 489–495. https://doi.org/10.1111/j.1469-7580.2009.01203.x
  95. Nicolopoulos-Stournaras S, Iles JF (1983) Motor neuron columns in the lumbar spinal cord of the rat. J Comp Neurol 217: 75–85.https://doi.org/10.1002/cne.902170107
  96. Canty AJ, Greferath U, Turnley AM, Murphy M (2006) Eph tyrosine kinase receptor EphA4 is required for the topographic mapping of the corticospinal tract. Proc Natl Acad Sci U S A 103: 15629–15634. https://doi.org/10.1073/pnas.0607350103
  97. Coonan JR, Bartlett PF, Galea MP (2003) Role of EphA4 in defining the position of a motoneuron pool within the spinal cord. J Comp Neurol 458: 98–111. https://doi.org/10.1002/cne.10571

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Таксономия видов, рассматриваемых в метанализе.

Скачать (565KB)
3. Рис. 2. Скелетотопия (a) и относительная длина (b) сегментов поясничного отдела спинного мозга взрослых животных для видов, использованных в метаанализе. На (а) для каждого вида указано число шейных, грудных и поясничных сегментов; слева пунктиром обозначены позвонки с нумерацией их по отделам (VT4–VL7) и непрерывной нумерацией, начиная от первого шейного позвонка (13th-32nd); светло-зелёным обозначен позвонок, в котором находится 29-й сегмент спинного мозга. Масштаб выбран так, чтобы длина позвонка VL2 (обозначен светло-оранжевым), используемого для нормировки, была одинаковой для всех видов. Черными прямоугольниками обозначены сегменты спинного мозга, сегмент L2 обозначен ярко-оранжевым, а 29-й сегмент – ярко-зелёным. Виды животных упорядочены по степени восхождения 29-го сегмента спинного мозга. На (b): Отношение длин поясничных сегментов к длине позвонка VL2. На каждом графике представлены виды животных с равным количеством поясничных позвонков (VL3, VL5–VL7). L – поясничный сегмент, part of VL2 – доля от длины позвонка VL2.

Скачать (579KB)
4. Рис. 3. Скелетотопия (a) и относительная длина (b) сегментов поясничного отдела спинного мозга новорожденных (newborn) и взрослых (adult) животных. На (а) для каждого вида указано число шейных, грудных и поясничных сегментов; слева пунктиром обозначены позвонки с нумерацией их по отделам и непрерывной нумерацией, начиная от первого шейного; светло-зелёным обозначен позвонок, в котором находится 29-й сегмент спинного мозга. Масштаб выбран так, чтобы длина позвонка VL2 (обозначен светло-оранжевым), используемого для нормировки, была одинаковой для всех видов. Черными прямоугольниками обозначены сегменты спинного мозга, сегмент L2 обозначен ярко-оранжевым, а 29-й сегмент – яркозелёным. На (b): отношение длин поясничных сегментов к длине позвонка VL2 у новорожденных и взрослых животных. L – поясничный сегмент, part of VL2 – доля от длины позвонка VL2.

Скачать (454KB)
5. Рис. 4. Связь параметров восхождения (относительной длины сегмента L2 (L2/VL2) и номера позвонка, содержащего 29-й сегмент спинного мозга, (vertebrae containing 29ʰᵗ segment)) с ловкостью пальцев (digital dexterity) и коэффициентом энцефализации (encephalization coefficient). Highly specialized – высокоспециализированные, other – не высокоспециализированные (прочие) виды. RSpearman, RPearson – значения коэффициента корреляции Спирмена и Пирсона, соответственно. * – p < 0.05, ** – p < 0.01, *** – p < 0.001.

Скачать (282KB)

© Российская академия наук, 2024