Investigation of Josephson Contacts Pb0.6In0.4/KFe2As2 and KFe2As2/KFe2As2 and Order Parameter Symmetry Check

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The characteristics of point Josephson contacts Pb0.6In0.4/KFe2As2 and KFe2As2/KFe2As2 have been studied. The temperature dependences of characteristic contact voltages VC(T) and the dependences of the first current step amplitudes in I–V characteristics on the power of 7.6-GHz electromagnetic radiation have been measured. It has been found that VC(T) curves for all contacts can be described in terms of the SIS*IS contact model (S, I, and S* stand for superconductor, insulator, and superconductor with a lower critical temperature, respectively) for superconductors with the s-symmetry of order parameter. It has been proved that the current step oscillation period as a function of microwave power can be exactly approximated with the resistive model of contact with IS = ICsin(φ). Obtained data are consistent with the normal s-symmetry of order parameter.

作者简介

M. Golubkov

Lebedev Physical Institute, Russian Academy of Sciences; National Research Technological University MISiS

Email: golubkov@lebedev.ru
119991, Moscow, Russia; 119049, Moscow, Russia

V. Stepanov

Lebedev Physical Institute, Russian Academy of Sciences

Email: golubkov@lebedev.ru
119991, Moscow, Russia

A. Sadakov

Lebedev Physical Institute, Russian Academy of Sciences

Email: golubkov@lebedev.ru
119991, Moscow, Russia

A. Usol'tsev

Lebedev Physical Institute, Russian Academy of Sciences

Email: golubkov@lebedev.ru
119991, Moscow, Russia

I. Morozov

Moscow State University

编辑信件的主要联系方式.
Email: golubkov@lebedev.ru
119049, Moscow, Russia

参考

  1. Y. Kamihara, H. Hiramatsu, M. Hirano et al., J. Amer. Chem. Soc. 128, 10012 (2006).
  2. Y. Bang, G. R. Stewart et al., J. Phys.: Condens. Matter 29, 123003 (2017).
  3. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Progr. in Physics 74, 124508 (2011).
  4. A. Barone, and G. Paterno. Physics and Applications of the Josephson E ect, Wiley, New York (1982).
  5. B. Sperstad, J. Linder, and Asle Sudbo, Phys.Rev.B 80, 144507 (2009).
  6. Z. Huang and X. Hu, Appl. Phys. Lett. 104, 162602 (2014).
  7. S-Z. Lin, Phys. Rev. B 86, 014510 (2012).
  8. Y. Ota, M. Machida, and T. Koyama, Phys. Rev. B 82, 140509R (2010).
  9. Y. Ota, M. Machida, T. Koyama, and H. Matsumoto, Phys. Rev. Lett. 102, 237003 (2009).
  10. Y. Yerin and A. N. Omelyanchouk, Low Temp. Phys. 43, 1013 (2017).
  11. X. Zhang, Y. S. Oh, Y. Liu et al., Phys. Rev. Lett. 102, 147002 (2009).
  12. X. Zhang, S. R. Saha, N. P. Butch et al., Appl. Phys. Lett. 95, 062510 (2009).
  13. S. Schmidt, S. D¨oring, F. Schmidt et al., Appl. Phys. Lett. 97, 172504, (2010).
  14. P. Seidel, Supercond. Sci. Technol. 24, 043001 (2011).
  15. S. D¨oring, S. Schmidt, F. Schmidl, et al., Supercond. Sci. Technol. 25, 084020 (2012).
  16. X. Zhang, B. Lee, S. Khim et al., Phys. Rev. B 85, 094521 (2012).
  17. S. D¨oring, M. Monecke, S. Schmidt et al., J. Appl. Phys. 115, 083901 (2014).
  18. V. V. Fisun, O. P. Balkashin, O. E. Kvitnitskaya et al., Fizika Nizkikh Temperatur 40, 1175 (2014).
  19. A. V. Burmistrova, A. Devyatov, A. A. Golubov et al., Phys. Rev. B 91, 214501 (2015).
  20. M. Tortello, V. A. Stepanov, X. Ding et al., J. Supercond. Novel Magn., 28, 679 (2016).
  21. S. Schmidt, S. D¨oring, N. Hasan et al., Phys. Status Solidi B, 254, 1600165 (2017).
  22. W. Tian, Y. Lv, Z. Xu et al., Supercond. Sci. Technol. 33, 025014 (2020).
  23. В. А. Степанов, М. В. Голубков, ЖЭТФ 157, 245 (2020).
  24. V. A. Stepanov, C. Lin, R. S. Gonnelli et al., Scienti c Reports 11, 23986 (2021).
  25. T. Scheller, F. Mueller, R. Wendisch et al., Phys. Proc. 36, 48 (2012).
  26. M. Yu. Kupriyanov, A. Brinkman, A. A. Golubov et al., Physica C 326-327, 16 (1999).
  27. D. Cassel, G. Pickartz, M. Siegel et al., Physica C 350, 276 (2001).
  28. A. A. Golubov, M. Yu. Kupriyanov, and E. Il'ichev, Rev. Mod. Phys. 76, 411 (2004).
  29. V. Stanev, Supercond. Sci. Technol. 28, 014006 (2015).
  30. Yong Liu, M. A. Tanatar, V. G. Kogan et al., Phys. Rev. B 87, 134513 (2013).
  31. M. Rotter, M. Pangerl, M. Tegel et al., arXiv:0807.4096v2.
  32. H. Luo, Z. Wang, H. Yang, P. Cheng et al., Supercond. Sci. Technol., 21, 125014 (2008).
  33. F. F. Tafti, A. Juneau-Fecteau, M-E. Delage et al., Nature Phys. 9, 349 (2013).
  34. B. Wang, K. Matsubayashi, J. Cheng et al., Phys. Rev. B 94, 020502(R) (2016).
  35. T. Terashima, M. Kimata, H. Satsukawa et al., J. Phys. Soc. Jpn. 78, 063702 (2009).
  36. K. Kihou, T. Saito, S. Ishida et al., J. Phys. Soc. Jpn. 79, 124713 (2010).
  37. T. Terashima, M. Kimata, N. Kurita et al., J. Phys. Soc. Jpn. 79, 053702 (2010).
  38. T. Terashima, N. Kurita, M. Kimata et al., Phys. Rev. B 87, 224512 (2013).
  39. S. Backes, D. Guterding, H. O. Jeschke et al., New J. Phys. 16, 083025 (2014).
  40. S. Maiti, M. M. Korshunov, A. V. Chubukov, Phys. Rev. B 85, 014511 (2012).
  41. H. Fukazawa, T. Saito, Y. Yamada et al., J. Phys. Soc. Jpn. 80, sa118 (2011).
  42. J.-Ph. Reid, M. A. Tanatar, A. Juneau-Fecteau et al., Phys. Rev. Lett. 109, 087001 (2012).
  43. M. Abdel-Ha ez, S. Aswartham, S. Wurmehl et al., Phys. Rev. B 85, 134533 (2012).
  44. F. Hardy, A. E. Bohmer, D. Aoki et al., Phys. Rev. Lett. 111, 027002 (2013).
  45. K. Hashimoto, A. Sera n, S. Tonegawa et al., Phys. Rev. B 82, 014526 (2010).
  46. D. Fang, X. Shi, Z. Du et al., Phys. Rev. B 92, 144513 (2015).
  47. K. Okazaki, Y. Ota, Y. Kotani et al., Science 337, 1314 (2012).
  48. Yu. G. Naidyuk, O. E. Kvitnitskaya, N. V. Gamayunova et al., Phys. Rev. B 90, 094505 (2014).
  49. М.В. Рослова, Дисс. канд. хим. наук, МГУ, Москва (2014).
  50. Y. Ota, K. Okazaki, Y. Kotani et al., Phys. Rev. B 89, 0811103 (2014).
  51. N. Xu, P. Richard, X. Shi et al., Phys. Rev. B 88, 220508(R) (2013)
  52. С. И. Веденеев, М. В. Голубков, Ю. И. Горина и др., ЖЭТФ 154, 844 (2018).
  53. C. T. Rao, W. Dubeck, F. Rothwarf. Phys. Rev. B 7, 1866 (1973).
  54. S. I. Vedeneev, A. G. M. Jansen, P. Samueli et al., Phys. Rev. B 49, 9823 (1994).
  55. К. К. Лихарев. УФН 127, 185 (1979).
  56. K. K. Likharev. Rev. Mod. Phys. 51, 101, (1979).
  57. R. Prozorov and R. W. Giannetta, Supercond. Sci. Technol. 19, R41 (2006).
  58. A. Brinkman, A. A. Golubov, and H. Rogalla et al., Phys. Rev. B 65, 180517(R) (2002).
  59. C. Nappi, F. Romeo, E. Sarnelli et al., Phys. Rev. B 92, 224503 (2015).
  60. A. Sasaki, S. Ikegaya, T. Habe et al., Phys. Rev. B 101, 185501 (2020).
  61. A. A. Kalenyuk, E. A. Borodianskyi, A. A. Kordyuk et al., Phys. Rev. B 103, 214507 (2021).
  62. P. Seidel, M. Siegel, E. Heinz, Physica C 180, 284 (1991).
  63. F. Busse, R. Nebel, P. Herzog et al., Appl. Phys. Lett., 63, 1687 (1993).
  64. R. L. Kautz, R. H. Ono, and C. D. Reintsema, Appl. Phys. Lett. 61, 342 (1992).
  65. К. К. Лихарев, В. К. Семенов, Радиотехника и электроника 16, 2367 (1971).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023