Analysis of the Effect of the Incoming Flow Velocity on the Flow Induced by a Dielectric Barrier Discharge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Plasma actuators based on a dielectric barrier discharge (DBD) are considered as a promising method оf flow control. Their main advantage is the possibility of flow acceleration by the ion wind without using movable elements. The generation of the ion wind by DBD in a settling gas has been studied quite comprehensively. At the same time, almost all aerodynamic applications of this method of flow control presume the presence of an external flow. However, the emergence of a bulk force in DBD in such conditions has not been investigated in detail. This study is devoted to detailed analysis of this effect. We have investigated the influence of DBD on the velocity distribution near electrodes using the PIV method and have calculated the bulk force generated by the ion wind. The results of this study demonstrate a substantial effect of the incoming flow velocity on the ion wind generation.

Sobre autores

P. Polivanov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

Email: polivanov@itam.nsc.ru
630090, Novosibirsk, Russia

O. Vishnyakov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

Email: polivanov@itam.nsc.ru
630090, Novosibirsk, Russia

V. Kislovskiy

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

Email: polivanov@itam.nsc.ru
630090, Novosibirsk, Russia

A. Sidorenko

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: polivanov@itam.nsc.ru
630090, Novosibirsk, Russia

Bibliografia

  1. A. A. Yatskikh, A. V. Panina, V. L. Kocharin, Yu.G. Yermolaev, A.D. Kosinov, and N.V. Semeniov, Siberian J. Phys. (in Russ.) 16, 81 (2021), doi: 10.25205/2541-9447-2021-16-1-81-90.
  2. I. Moralev, V. Bityurin, A. Firsov, V. Sherbakova, I. Selivonin, and U. S. Maxim, Proceedings of the Institution of Mechanical Engineers, Part G: J.Aerospace Engin. 42, 234 (2018).
  3. I.A. Moralev and I.V. Selivonin, Tech.Phys. Lett. 43, 220 (2017), https://doi.org/10.1134/S1063785017020237.
  4. P.A. Polivanov and A.A. Sidorenko, Tech.Phys. Lett. 44, 833 (2018), doi: 10.1134/S1063785018090262.
  5. P.A. Polianov, A.A. Sidorenko, and A.A. Maslov, J.Aerospace Engin. 58, 234 (2020), doi: 10.1177/0954410018795542.
  6. A.A. Sidorenko, A.D. Budovsky, P.A. Polivanov et al., Thermophys.Aeromech. 26, 465 (2019), https://doi.org/10.1134/S0869864319040012.
  7. E.D. Fylladitakis, M.P. Theodoridis, and A.X. Moronis, IEEE Trans.Plasma Sci. 42, 358 (2014).
  8. P.A. Polivanov, O. I. Vishnyakov, A.A. Sidorenko et al., Tech.Phys. 57, 457 (2012), https://doi.org/10.1134/S1063784212040238.
  9. P.A. Polivanov, O. I. Vishnyakov, A.A. Sidorenko, and A.A. Maslov, EUCASS 2013, Proceedings and Abstracts (2013).
  10. P. Boeuf et al., 5th AIAA Aerospace Sciences Meeting and Exhibit (2007), https://doi.org/10.2514/6.2007-183.
  11. N. Benard, N. Balcon, and E. Moreau, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009), https://doi.org/10.2514/6.2009-488
  12. J.-J. Wang, K.-S. Choi, L.-H. Feng, T.N. Jukes, and R.D. Whalley, Progr.Aerospace Sci. 62, 52 (2013).
  13. J. Kriegseis, B. Simon, and S. Grundmann, Appl. Mech.Rev. 68, 020802 (2016).
  14. D.E. Ashpis and M.C. Laun, AIAA J. 55, 4181 (2017), doi: 10.2514/1.J055856.
  15. S. Sato, H. Furukawa, A. Komuro et al., Sci.Rep. 9, 5813 (2019), https://doi.org/10.1038/s41598-019-42284-w.
  16. V.R. Soloviev, J.Phys.D: Appl.Phys. 45, 025205 (2012).
  17. A.A. Knizhnik, S.V. Korobtsev, D.D. Medvedev et al., JETP Lett. 111, 273 (2020), https://doi.org/10.1134/S00213640200500823.
  18. D.V. Beloplotov, V. F. Tarasenko, D.A. Sorokin et al., JETP Lett. 106, 653 (2017), https://doi.org/10.1134/S0021364017220064.
  19. V. F. Tarasenko, V. S. Kuznetsov, V.A. Panarin et al., JETP Lett. 110, 85 (2019).
  20. V.R. Soloviev and V.M. Krivtsov, J.Phys.D: Appl.Phys. 42, 125208 (2009).
  21. V.R. Soloviev and V.M. Krivtsov, Plasma Sources Sci.Technol. 27, 114001 (2018).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023