OSOBENNOSTI RABOTY PROVOLOChNYKh Kh-PINChEY NAKOMPAKTNOMSIL'NOTOChNOMGENERATOREKING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Представлены экспериментальные исследования 4-проволочных Х-пинчей на модернизированном генераторе КИНГ, состоящем из четырех низкоиндуктивных конденсаторов, с максимумом тока 160–250 кА, временем нарастания тока 150–300 нс при зарядном напряжении 45 кВ. Продемонстрирована возможность использования генератора в качестве источника мягкого рентгеновского излучения при использовании стандартных Х-пинчей проволочек из Al, Cu или Mo диаметром 25 мкм. Показано, что модернизация привела к увеличению индуктивности, но не к ухудшению параметров Х-пинча. Это привело к возможности применения данного генератора для питания стандартных Х-пинчей и их использования в качестве источников излучения для точечной проекционной радиографии с пространственным разрешением порядка 13–23 мкм.

About the authors

I. N. Tilikin

Физический институт им. П.Н. Лебедева Российской академии наук

Email: ivan.tilikin@gmail.com
Москва, Россия

T. A. Shelkovenko

Физический институт им. П.Н. Лебедева Российской академии наук

Москва, Россия

A. R. Mingaleev

Физический институт им. П.Н. Лебедева Российской академии наук

Москва, Россия

A. A. Mingaleev

Физический институт им. П.Н. Лебедева Российской академии наук

Москва, Россия

A. E. Ter-Oganesyan

Физический институт им. П.Н. Лебедева Российской академии наук

Москва, Россия

S. A. Pikuz

Физический институт им. П.Н. Лебедева Российской академии наук

Москва, Россия

References

  1. T.A. Shelkovenko, S.A. Pikuz, A.R. Mingaleev, and D.A. Hammer, Studies of Plasma Formation from Exploding Wires and Multiwire Arrays Using X-ray Backlighting, Rev. Sci. Instrum 70, 667 (1999).
  2. S.V. Lebedev, F.N. Beg, S.N. Bland et al., X-ray Backlighting of Wire Array Z-pinch Implosions Using X-pinch, Rev. Sci. Instrum. 72, 671 (2001).
  3. T.A. Shelkovenko, D.B. Sinars, S.A. Pikuz, and D.A. Hammer, Radiographic and Spectroscopic Studies of X-pinch Plasma Implosion Dynamics and X-ray Burst Emission Characteristics, Phys.Plasmas 8, 1305 (2001).
  4. T. Zhao, X. Zou, X. Wang et al., X-Ray Backlighting of Developments of X-pinches and Wire-Array Zpinches Using an X-pinch, IEEE Trans. on Plasma Sci. 38, 646 (2010).
  5. X. Zhu, X. Zou, R. Zhang et al., X-Ray Backlighting of the Initial Stage of Single-and Multiwire Z-Pinch, IEEE Trans. on Plasma Sci. 40, 3329 (2012).
  6. T.A. Shelkovenko, S.A. Pikuz, and D.A. Hammer, A Review of Projection Radiography of Plasma and Biological Objects in X-pinch Radiation, Plasma Phys.Rep. 42, 226 (2016).
  7. S.A. Pikuz, T.A. Shelkovenko, I.N. Tilikin et al., Study of SXR/EUV Radiation of Exploded Foils and Wires with Spectral, Spatial and Temporal Resolution Simultaneously on KING Electric Discharge Facility, Plasma Sources Sci. and Technol. 30, 115012 (2021).
  8. T.A. Shelkovenko, I.N. Tilikin, E.A. Bolkhovitinov et al., A Study of the Ultraviolet Radiation of Hybrid X-pinches, Plasma Phys.Rep. 46, 10 (2020).
  9. S.A. Pikuz, D.B. Sinars, T.A. Shelkovenko et al., High Energy Density Z-pinch Plasma Conditions with Picosecond Time Resolution, Phys.Rev. Let. 89, 035003 (2002).
  10. S.V. Lebedev, F.N. Beg, S.N. Bland et al., Effect of Core-Corona Plasma Structure on Seeding of Instabilities in Wire Array Z Pinches, Phys.Rev. Let. 85, 98 (2000).
  11. T.A. Shelkovenko, S.A. Pikuz, J.D. Douglass et al., Multiwire X-pinches at 1-MA Current on the COBRA Pulsed-Power Generator, IEEE Trans. on Plasma Sci. 34, 2336 (2006).
  12. G.A. Mesyats, T.A. Shelkovenko, G.V. Ivanenkov et al., X-pinch Source of Subnanosecond Soft X-ray Pulses Based on Small-sized Low-inductance Current Generator, J. of Exp. and Theor. Phys. 111, 363 (2010).
  13. S.A. Pikuz, T.A. Shelkovenko, and D.A. Hammer Xpinch. Part I, Plasma Phys.Rep. 41, 291 (2015).
  14. T. Shelkovenko, S. Pikuz, and D. Hammer, X-pinches as Broadband Sources of X-rays for Radiography, J. of Biomedical Sci. and Engineering 8, 747 (2015).
  15. T.A. Shelkovenko, S.A. Pikuz, A.R. Mingaleev et al., Accelerated Electrons and Hard X-ray Emission from X-pinches, Plasma Phys.Rep 34, 754 (2008).
  16. T.A. Shelkovenko, S.A. Pikuz, C. L. Hoyt et al., A Source of Hard X-ray Radiation Based on Hybrid XPinches, Phys.Plasmas 23, 10 (2016).
  17. С.М. Захаров, Г.В. Иваненков, А.А. Коломенский и др., Проволочный X-пинч в сильноточном диоде, Письма в ЖТФ 8, 1060 (1982).
  18. T.A. Shelkovenko, S.A. Pikuz, I.N. Tilikin et al., Xpinch X-ray Emission on a Portable Low-current, Fast Rise-time Generator, J. of Appl.Phys. 124, 8 (2018).
  19. T.A. Shelkovenko, I.N. Tilikin, G.V. Ivanenkov et al., Dynamics of hybrid X-pinches, Plasma Phys.Rep. 41, 52 (2015).
  20. A.V. Kharlov, B.M. Kovalchuk, V.B. Zorin, Compact High Current Generator for X-Ray Radiography, Rev. Sci. Instr. 77, 123501 (2006).
  21. A.P. Artyomov, A.V. Fedyunin, S.A. Chaikovsky et al., A Double-frame Nanosecond Soft X-ray Backlighting System Based on X-pinches, Instr. and Exp.Tech. 56, 66 (2013).
  22. A.P. Artyomov, M.G. Bykova, S.A. Chaikovsky et al., A Small-scale X-pinch-based Nanosecond Soft Xray Pulse Radiograph, Russ.Phys. J 56, 66 (2012).
  23. S.A. Pikuz, T.A. Shelkovenko, I.N. Tilikin et al., Study of SXR/EUV Radiation of Exploded Foils and Wires with Spectral, Spatial and Temporal Resolution Simultaneously on KING Electric Discharge Facility, Plasma Sources Sci. and Technol. 30, 115012 (2021).
  24. E.A. Bolkhovitinov, I.N. Tilikin, T.A. Shelkovenko et al., Study of Hybrid X-pinch in the XUV and SXR Spectral Ranges, J. of Phys.: Conf. Ser. 1094, 012022 (2018).
  25. E.A. Bolkhovitinov, I.N. Tilikin, T.A. Shelkovenko et al., Study of VUV Radiation of Hybrid and Standard X-pinches on KING Electric Discharge Facility, Plasma Sources Sci. and Technol. 29, 025009 (2020).
  26. D.B. Sinars, S.A. Pikuz, J.D. Douglass et al., Bright Spots in 1 MA X-pinches as a Function of Wire Number and Material, Phys.Plasmas 15, 9 (2008).
  27. I.N. Tilikin, T.A. Shelkovenko, S.A. Pikuz et al., Exploding Foils with Artificial Structure as a Source of Ultraviolet Radiation, J. of Appl.Phys. 134, 3 (2023).
  28. T.A. Shelkovenko, I.N. Tilikin, A.V. Oginov et al., Methods of Controlled Formation of Instabilities During the Electrical Explosion of Thin Foils, Matter and Radiation at Extremes 8, 5 (2023).
  29. http://www.prism-cs.com/Software/PrismSpect/PrismSPECT.htm

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences