ISSLEDOVANIE ANIZOTROPII FORMY NANOKRISTALLOV METODOM EXAFS-SPEKTROSKOPII

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

На примере модельной системы, представляющей собой множество нанокристаллов (НК), имеющих форму прямоугольного параллелепипеда и кубическую кристаллическую структуру типа цинковой обманки, продемонстрированы возможности определения анизотропии формы НК с помощью методики поляризованных спектров EXAFS. Показано, что эффективное значение координационного числа поглощающих атомов в анизотропном по форме НК зависит от его размеров и ориентации вектора поляризации рентгеновского излучения относительной поверхности НК. Смоделированы эффективные значения координационных чисел первой координационной сферы атомов в НК, имеющих разные размеры и состав поверхности. Проанализированы возможности применимости модели к анализу реальных систем с НК с учетом влияния экспериментальной погрешности метода EXAFS.

About the authors

K. A Svit

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

Email: svitkirill1989@gmail.com
630090, Новосибирск, Россия

K. S Zhuravlev

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

Email: email@example.com
630090, Новосибирск, Россия

References

  1. M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
  2. D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
  3. W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
  4. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
  5. E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
  6. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
  7. P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
  8. A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
  9. V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
  10. S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
  11. A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
  12. T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
  13. C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
  14. C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
  15. M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
  16. A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
  17. G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
  18. R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
  19. M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
  20. C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
  21. C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
  22. N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
  23. D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences