Electronic Band Structure, Antiferromagnetism, and the Nature of Chemical Bonding in La2CuO4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electronic band structure of orthorhombic compound La2CuO4, which is the parent for a number of high-temperature superconductor families, has been calculated in terms of the density functional theory using the WIEN2k program package. Calculations have been performed by means of two exchange-correlation functionals. The former is a sum of the Tran- and Blaha-modified Becke–Johnson exchange potential and correlations in a local approximation, whereas the latter is the Perdew–Burke–Ernzerhof functional. Calculations taking into account spin polarization have shown the presence of an antiferromagnetic ground state in orthorhombic La2CuO4. Using the former functional, the magnetic moment of copper atoms and a semiconductor gap have been found to be MCu = 0.725μB and Eg = 2 eV. The latter has yielded MCu = 0.278μB and Eg = 0. Calculations results for the optical properties of orthorhombic La2CuO4: the electron energy losses, the real part of optical conductivity, and reflection coefficient, are in good agreement with experimental data. The calculated spatial distribution of the charge density in orthorhombic compound La2CuO4 has been analyzed with the aim of finding critical saddle points with parameters making it possible to classify the types of chemical bonds in crystals. The set of critical point parameters for orthorhombic La2CuO4 has turned out to be similar to that previously found by us for tetragonal La2CuO4 and related high temperature superconductors. In particular, the positive sign of the charge density Laplacian at bond critical points indicates the absence of covalent bonding in La2CuO4 according to the chemical bond classification proposed by Bader in his “Quantum Theory of Atoms in Molecules and Crystals.”

About the authors

V. G. Orlov

National Research Center Kurchatov Institute;Moscow Institute of Physics and Technology

Email: valeryorlov3@gmail.com
Moscow, 123182 Russia;Dolgoprudnyi, Moscow oblast, 141700 Russia

G. S. Sergeev

National Research Center Kurchatov Institute

Author for correspondence.
Email: valeryorlov3@gmail.com
Moscow, 123182 Russia

References

  1. J. G. Bednorz and K. A. Mu¨ller, Z. Phys. B 64, 189 (1986).
  2. X. Zhou, W.-S. Lee, M. Imada et al., Nat. Rev. Phys. 3, 462 (2021).
  3. J. G. Bednorz, M. Takashige, and K. A. Mu¨ller, Europhys. Lett. 3, 379 (1987).
  4. J. G. Bednorz, M. Takashige, and K. A. Mu¨ller, Mater. Res. Bull. 22, 819 (1987).
  5. J. M. Tarascon, L. H. Greene, W. R. McKinnon et al., Science 235, 1373 (1987).
  6. R. J. Cava, R. B. van Dover, B. Battlog et al., Phys. Rev. Lett. 58, 408 (1987).
  7. F. C. Chou and D. C. Johnston, Phys. Rev. B 54, 572 (1996).
  8. S. A. Kivelson, G. Aeppli, and V. J. Emery, PNAS 98, 11903 (2001).
  9. R. Hord, G. Cordier, K. Hofmann et al., Z. Anorg. Allg. Chem. 637, 1114 (2011).
  10. Int. Tables for Crystallography, Vol. A. Space-group symmetry, 5th ed., ed. by Th. Hahn, Springer (2005).
  11. L. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).
  12. J. Yu, A. F. Freeman, and J.-H. Xu, Phys. Rev. Lett. 58, 1035 (1987).
  13. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
  14. D. Vaknin, S. K. Sinha, D. E. Moncton et al., Phys. Rev. Lett. 58, 2802 (1987).
  15. K. Yamada, E. Kudo, Y. Endoh et al., Sol. St.Comm. 64, 753 (1987).
  16. J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).
  17. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
  18. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
  19. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
  20. И. А. Макаров, С. Г. Овчинников, ЖЭТФ 148, 526 (2015).
  21. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
  22. M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).
  23. J. P. Perdew, A.Ruzsinszky, J. Tao et al., J. Chem. Phys. 123, 062201 (2005).
  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  25. J. W. Furness, Y. Zhang, C. Lane et al., Comm. Phys. 1, 11 (2018).
  26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  27. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
  28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
  29. J. K. Perry, J. Tahir-Kheli, and W. A. Goddart III, Phys. Rev. B 63, 144510 (2001).
  30. P. Rivero, I. de P. R. Moreira, and F. Illeas, Phys. Rev. B 81, 205123 (2010).
  31. C. Lane, J. W. Furness, I. G. Buda et al., Phys. Rev. B 98, 125140 (2018).
  32. J. Sun, A.Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
  33. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties Vienna Univ. of Technology, Austria (2021). ISBN 3-9501031-1-2.
  34. P. Blaha, K. Schwarz, F. Tran et al., J. Chem. Phys. 152, 074101 (2020).
  35. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
  36. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
  37. H. Dixit, R. Saniz, S. Cottenier et al., J. Phys.: Condens. Matter 24, 205503 (2012).
  38. D. J. Singh, Phys. Rev. B 82, 205102 (2010).
  39. V. G. Orlov and G. S. Sergeev, Physica B 536, 839 (2018).
  40. V. G. Orlov and G. S. Sergeev, JMMM 475, 627 (2019).
  41. Э. А. Кравченко, В. Г. Орлов, Г. С. Сергеев, ЖЭТФ 158, 876 (2020).
  42. R. F. W. Bader, Atoms in Molecules: a Quantum Theory, International Series of Monographs on Chemistry 22, Oxford Sci. Publ., Oxford (1990).
  43. C. Gatti, Z. Kristallogr. 220, 399 (2005).
  44. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design, ed. by C. F. Matta and R. J. Boyd WILEY-VCH, Verlag GmbH&Co. KGaA, Weinheim (2007).
  45. J. M. Ginger, M. G. Roe, Y. Song et al., Phys. Rev. B 37, 7506 (1988).
  46. S. Uchida, T. Ido, H. Takagi et al., Phys. Rev. B 43, 7942 (1991).
  47. M. Terauchi and M. Tanaka, Micron 30, 371 (1999).
  48. M. Hidaka, N. Tokiwa, M. Oda et al., Phase Trans. 76, 905 (2003).
  49. P. Steiner, J. Albers, V. Kinsinger et al., Z. Phys. B 66, 275 (1987).
  50. T. Takahashi, F. Maeda, H. Katayama-Yoshida et al., Phys. Rev. B 37, 9788 (1988).
  51. N. Nucker, J. Fink, B. Renker et al., Z. Phys. B 67, 9 (1987).
  52. B. Reihl, T. Riesterer, J. G. Bednorz et al., Phys. Rev. B 35, 8804 (1987).
  53. A. Fujimori, E. Takayama-Muromachi, Y. Uchida et al., Phys. Rev. B 35, 8814 (1987).
  54. Z.-X. Shen, J. W. Allen, J. J. Yeh et al., Phys. Rev. B 36, 8414 (1987).
  55. C. Ambrosch-Draxl and J. O. Sofo, Comp. Phys.Comm. 175, 1 (2006).
  56. R. Abt, C. Ambrosch-Draxl, and P. Knoll, Physica B 194-196, 1451 (1994).
  57. S. Tajima, H. Ishii, T. Nakahashi et al., J. Opt. Soc. Am. B 6, 475 (1989).
  58. S. Uchida, T. Ido, H. Takagi et al., Phys. Rev. B 43, 7942 (1991).
  59. A. Otero-de-la-Roza, E. R. Johnson, and V. Luana, Comp. Phys.Comm. 185, 1007 (2014).
  60. V. G. Orlov and G. S. Sergeev, AIP Adv. 12, 055110 (2022).
  61. В. Г. Орлов, Г. С. Сергеев, ФТТ 64, 1900 (2022).
  62. D. D. Wagman, W. H. Evans, V. B. Parker et al., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).
  63. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
  64. M. J. Lawler, K. Fujita, J. Lee et al., Nature 466, 347 (2010).
  65. R.Comin and A. Damascelli, Ann. Rev. Condens. Matter Phys. 7, 369 (2016).
  66. H. Miao, G. Fabbris, R. J. Koch et al., npj Quantum Materials 6, 31 (2021).
  67. R. Arpaia, S. Caprara, R. Fumagalli et al., Science 365, 906 (2019).
  68. R. Arpaia and G. Chiringhelli, J. Phys. Soc. Jpn 90, 111005 (2021).
  69. H. C. Robarts, M. Garcia-Fernandez, J. Li et al., Phys. Rev. B 103, 224427 (2021).
  70. V. G. Orlov, A. A. Bush, S. A. Ivanov et al., J. Low Temp. Phys. 105, 1541 (1996).
  71. B. O. Wells, R. J. Birgenaeu, F. C. Chou et al., Z. Phys. B 100, 535 (1996).
  72. http://ckp.nrcki.ru

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences