Effect of Surface Barrier on the Sputtering Yield of Tungsten by Hydrogen Isotopes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The sputtering yields of a tungsten target by hydrogen isotopes in the energy range of bombarding particles from 50 eV to 100 eV, as well as the dependence of the sputtering yields on the angle of incidence of the beam on the target and the energy and angular distributions of sputtered particles are obtained by the code developed by us. The strong influence of the type of surface barrier on the results of calculation of the sputtering yield, as well as on the characteristics of sputtered particles is demonstrated. The results obtained make it possible to more accurately assess the tungsten impurity inflow into the hot plasma zone of tokamak.

Sobre autores

V. Mikhaylov

Ioffe Institute

Email: chiro@bk.ru
St. Petersburg, 194021 Russia

P. Babenko

Ioffe Institute

Email: chiro@bk.ru
St. Petersburg, 194021 Russia

A. Shergin

Ioffe Institute

Email: chiro@bk.ru
St. Petersburg, 194021 Russia

A. Zinov'ev

Ioffe Institute

Autor responsável pela correspondência
Email: chiro@bk.ru
St. Petersburg, 194021 Russia

Bibliografia

  1. J. Linke et al., Matter Rad. Extrem. 4, 056201 (2019).
  2. O. El-Atwani et al., Nucl. Fusion 54, 083013 (2014).
  3. S. Yamoto et al., Nucl. Fusion 57, 116051 (2017)
  4. R. D. Smirnov, S. I. Krasheninnikov, A. Yu. Pigarov, and T. D. Rognlien, Phys. Plasmas 22, 012506 (2015).
  5. F. Ding, G. N. Luo, X. Chen et al., Plasma-Tungsten Interactions in Experimental Advanced Superconducting Tokamak (EAST), Tungsten 1, 122 (2019).
  6. R. A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019).
  7. Binfu Gao et al., Fusion Engin. Design 156, 111616 (2020).
  8. J. Guterl, I. Bykov, R. Ding, and P. Snyder, Nucl. Mater. Energy 27, 100948 (2021).
  9. R. V. Jensen, D. E. Post, W. H. Grasberger et al., Nucl. Fusion 17, 1187 (1977).
  10. П. Ю. Бабенко, А. Н. Зиновьев, В. С. Михайлов, Д. С. Тенсин, А. П. Шергин, ПЖТФ 48, 10 (2022).
  11. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, K. Nordlund, and A. N. Zinoviev, Nucl. Instr. Meth. B 460, 4 (2019).
  12. П. Ю. Бабенко, А. Н. Зиновьев, Д. С. Тенсин, ЖТФ 92, 1643 (2022).
  13. A. N. Zinoviev, P. Yu. Babenko, and K. Nordlund, Nucl. Instr. Meth. B 508, 10 (2021).
  14. A. N. Zinoviev, and K. Nordlund, Nucl. Instr. Meth. B 406, 511 (2017).
  15. Б. П. Никольский, Справочник химика, Химия, Ленинград (1966).
  16. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton (2007).
  17. А. Н. Зиновьев, П. Ю. Бабенко, Письма в ЖЭТФ 115, 603 (2022).
  18. W. Eckstein, C. Garcia-Rosales, J. Roth, and W. Ottenberger, Sputtering Data, Report IPP 9/82, Garching: MPG (1993).
  19. J. Roth, J. Bohdansky, and W. Ottenberger, Data on Low Energy Light Ion Sputtering, Report IPP 9/26, Garching: MPG (1979).
  20. J. Roth, J. Bohdansky, and A. P. Martinelli, Radiat. E. 48, 213 (1980).
  21. J. N. Smith, Jr., C. H. Meyer, Jr., and J. K. Layton, Nucl. Technol. 29, 318 (1976).
  22. М. И. Гусева, А. Л. Суворов, С. Н. Коршунов, Н. Е. Лазарев, ЖТФ 69, 137 (1999).
  23. R. Behrisch and W. Eckstein, Sputtering by Particle Bombardment, Springer, Berlin (2007).
  24. G. Falcone and F. Gullo, Phys. Lett. A 125, 432 (1987).
  25. Д. Фальконе, УФН 162, 71 (1992).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023