Satellites of the Dipole-Forbidden Transitions to the Low-Lying 2S1/2 and 2D3/2,5/2 Excited States of K, Rb, and Cs Atoms in the Spectra of Gas-Phase Mixtures with CF4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The luminescence excitation spectra of the D1 resonance line of atoms K, Rb, and Cs in gas mixtures with CF4 are found to contain satellite transitions, which correspond to the transition of an atom to the states (n – 1)d 2D3/2,5/2 and (n + 1)s 2S1/2, where n = 4, 5, and 6 for K, Rb, and Cs, respectively, with the simultaneous excitation of CF4 molecule vibrations at the IR active mode frequency ν3 with a quantum energy of 1283 cm–1. These satellite transitions are A(ns 2S1/2) + CF43 = 0) + hν → A((n – 1)d 2D3/2,5/2) + CF43 = 1) and A(ns 2S1/2) + CF43 = 0) + hν → A((n + 1)s 2S1/2) + CF43 = 1), where A = K, Rb, and Cs. The appearance of an optical coupling between the upper and lower states of these asymptotically (at RACF4">RACF4 → ∞) forbidden transitions is shown to be caused by the interaction of the dipole moment of the ν3 = 1 ↔ ν3 = 0 vibrational transition in the CF4 molecule with the dipole moments of the electronic transitions np 2P1/2,3/2 ↔ (n – 1)d 2D3/2,5/2 and np 2P1/2,3/2 ↔ (n + 1)s 2S1/2 in an alkali metal atom; as a result of this interaction, the upper state of the satellite transition acquires admixtures of the A(np 2P1/2,3/2)CF43 = 0) resonance states.

About the authors

V. A. Alekseev

Institute of Silicate Chemistry, Russian Academy of Sciences

Email: vadim-alekseev@mail.ru
St. Petersburg, 199034 Russia

T. A. Vartanyan

National Research University ITMO

Email: tvaza@mail.ru
Russia, 197101, St. Petersburg

A. S. Pazgalev

Ioffe Institute

Email: vadim-alekseev@mail.ru
St. Petersburg, 194021 Russia

P. Yu. Serdobintsev

St. Petersburg State University

Author for correspondence.
Email: vadim-alekseev@mail.ru
St. Petersburg, 199034 Russia

References

  1. Л. И. Гудзенко, С. И. Яковленко, ЖЭТФ 62, 1686 (1972).
  2. J. Szudy and W. E. Baylis, Phys. Rep. 266, 127 (1996).
  3. R. Hotop and R. Niemax, J. Phys. B 13, L93 (1980).
  4. J. C. White, G. A. Zdasiuk, J. F. Young, and S. E. Harris, Opt. Lett. 4, 137 (1979).
  5. V. A. Alekseev, A. A. Pastor, A. S. Pazgalev, P. A. Petrov, P. Yu. Serdobintsev, and T. A. Vartanyan, JQSRT 258, 107339 (2021).
  6. В. А. Алексеев, Н. К. Бибинов, И. П. Виноградов, Опт. Спектр. 73, 269 (1992).
  7. В. А. Алексеев, А. А. Пастор, П. Ю. Сердобинцев, Т. А. Вартанян, Письма ЖЭТФ 114, 60 (2021).
  8. V. A. Alekseev and N. Schwentner, Chem. Phys. Lett. 463, 47 (2008).
  9. V. A. Alekseev, J. Grosser, O. Ho mann, and F. Rebentrost, J. Chem. Phys. 129, 201102 (2008).
  10. G. A. Pitz and M. D. Anderson, Appl. Phys. Rev. 4, 041101 (2017).
  11. M. Carlos, O. Gruson, C. Richard, V. Boudon, M. Rotger, X. Thomas, C. Maul, C. Sydow, A. Domanskaya, R. Georges, P. Soulard, O. Pirali, M. Goubet, P. Asselin, and T. R. Huet, JQSRT 201, 75 (2017).
  12. G. Moe, A. C. Tam, and W. Happer, Phys. Rev. A 14, 349 (1976).
  13. V. Dubourg, M. Ferray, J. P. Visticot, and B. Sayer, J. Phys. B 19, 1165 (1986).
  14. E. J. Breford аnd F. Engelke, Chem. Phys. Lett. 75, 132 (1980).
  15. D. Edvardsson, S. Lunell, and Ch. M. Marian, Mol. Phys. 101, 2381 (2003).
  16. Y. Lee, S. Lee, and B. Kim, J. Phys. Chem. A 112, 6893 (2008).
  17. M. D. Rotondaro and G. P. Perram, Phys. Rev. A 57, 4045 (1998).
  18. S. Brode, Ch. Kolmel, H. Schi er, and R. Ahlrichs, Z. Phys. Chem. 155, 23 (1987).
  19. В. А. Алексеев, Опт. Спектр. 130, 1343 (2022).
  20. S. E. Harris and J. C. White. IEEE J. Quant. Electron. 12, 972 (1977).
  21. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2020), NIST Atomic Spectra Database (version 5.8) [Online]. Available: https://physics.nist.gov/asd [May 31, 2021]; National Institute of Standards and Technology, Gaithersburg, MD; DOI: https://doi.org/10.18434/T4W30F

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences