Effect of Noise on Resistive Switching of an Yttria Stabilized Zirconia Based Memristor
- Authors: Gorshkov O.N.1, Filatov D.O.1, Koryazhkina M.N.1, Lobanova V.A.1, Ryabova M.A.1
-
Affiliations:
- Lobachevsky University of Nizhny Novgorod
- Issue: Vol 164, No 5 (2023)
- Pages: 810-816
- Section: Articles
- URL: https://transsyst.ru/0044-4510/article/view/653623
- DOI: https://doi.org/10.31857/S0044451023110123
- EDN: https://elibrary.ru/PKELZQ
- ID: 653623
Cite item
Abstract
The effect of Gaussian noise on the switching of a ZrO2(Y) based memristor from the low resistance state (LRS) into the high resistance state (HRS) including transitions from the LRS into intermediate metastable states has been studied. The series of positive (with addition of the noise signal or without the one) and negative rectangular voltage pulses were used as the switching signals. The adding of noise to the switching signal initiated the switching of the memristor from the LRS into the HRS at smaller pulse magnitudes than in the case of switching by the rectangular pulses without adding the noise. A necessary (preset) HRS can be achieved passing the intermediate states by adding the noise with certain parameters to the rectangular switching pulses. The resistive switching is performed without application of adaptive switching protocols. The results of the present study can be applied in the development of innovative memristor switching protocols.
About the authors
O. N. Gorshkov
Lobachevsky University of Nizhny Novgorod
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia
D. O. Filatov
Lobachevsky University of Nizhny Novgorod
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia
M. N. Koryazhkina
Lobachevsky University of Nizhny Novgorod
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia
V. A. Lobanova
Lobachevsky University of Nizhny Novgorod
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia
M. A. Ryabova
Lobachevsky University of Nizhny Novgorod
Author for correspondence.
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia
References
- S. H. Lee, X. Zhu, and W. D. Lu, Nano Res. 13, 1228 (2020).
- D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nat. Mater. 80, 453 (2008).
- D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).
- J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).
- I. Riess, J. Electroceram. 39, 61 (2017).
- A. Sawa, Mater. Today 11, 28 (2008).
- Z. Wang, H. Wu, G. W. Burr et al., Nat. Rev. Mater. 5, 173 (2020).
- A. Stotland and M. di Ventra, Phys. Rev. E 85, 011116 (2012).
- H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
- D. O. Filatov, D. V. Vrzheshch, O. V. Tabakov et al., J. Stat. Mech. Theory Exp. 124026 (2019).
- A. N. Mikhaylov, D. V. Guseinov, A. I. Belov et al., Chaos, Solitons & Fractals 144, 110723 (2021).
- M. A. Ryabova, D. O. Filatov, M. N. Koriazhkina et al., J. Phys.: Conf. Ser. 1851, 012003 (2021).
- N. V. Agudov, A. A. Dubkov, A. V. Safonov et al., Chaos, Solutions and Fractals 150, 111131(2021).
- D. O. Filatov, M. N. Koryazhkina, A. S. Novikov et al., Chaos, Solitons, & Fractals 156, 111810 (2022).
- M. N. Koryazhkina, D. O. Filatov, V. A. Shishmakova et al., Chaos, Solutions & Fractals 162, 112459 (2022).
- G. A. Patterson, P. I. Fierens, and D. F. Grosz, Appl. Phys. Lett. 103, 074102 (2013).
- V. Ntinas, A.Rubio, G. Ch. Sirakoulis et al., IEEE Trans. Circuits and Systems II 68, 1378 (2021).
- S. Menzel, U. Bottger, M. Wimmer, and M. Salinga, Adv. Func. Mater. 25, 6306 (2015).
Supplementary files
