Search for a New Internucleon Interaction Using Neutron Powder Diffraction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The application of neutron powder diffraction to search for a new internucleon Yukawa-like interaction is considered. The essence of the method is in the investigation of dependency of the neutron scattering amplitude on the momentum transfer. The possible contributions to the scattering amplitude and to the integrated intensity of diffraction maxima were analyzed. The neutron diffraction experiment with silicon powder at D20 diffractometer of the ILL reactor (Grenoble, France) was performed. From the data obtained constraints on the coupling constant of the considered interaction were made. It is shown that in the interaction radius range of λ = 10–13–10—11 m they improve the values already existing in the literature. The result obtained is limited by imperfections of the experimental setup. Eliminating the instrumental contribution may allow increasing the sensitivity of the method by at least an order of magnitude.

About the authors

V. V. Voronin

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”; St. Petersburg State University

Email: shapirod@mail.ru
188300, Gatchina, Russia; 199034, St. Petersburg, Russia

D. D. Shapiro

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”; St. Petersburg State University

Email: shapirod@mail.ru
188300, Gatchina, Russia; 199034, St. Petersburg, Russia

S. Yu. Semenikhin

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”

Email: shapirod@mail.ru
188300, Gatchina, Russia

T. S. Khansen

Institut Laue-Langevin

Author for correspondence.
Email: shapirod@mail.ru
38042, Grenoble, France

References

  1. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).
  2. J. A. Frieman, M. S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008).
  3. M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B 166, 493 (1980).
  4. А. Д. Сахаров, Письма в ЖЭТФ 5, 32 (1967).
  5. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).
  6. B. Abi, T. Albahri, S. Al-Kilani et al., Phys. Rev. Lett. 126, 141801 (2021).
  7. C. E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015).
  8. D. S. Firak, A. J. Krasznahorkay, M. Csatl'os et al., EPJ Web Conf. 232, 04005 (2020).
  9. D.V. Kirpichnikov, V. E. Lyubovitskij, and A. S. Zhevlakov, Phys. Rev. D 102, 095024 (2020).
  10. J. Murata and S. Tanaka, Class. Quantum Grav. 32, 033001 (2015).
  11. M. S. Safronova, D. Budker, D. DeMille et al., Rev. Mod. Phys. 90, 025008 (2018).
  12. S. Sponar, R. Sedmik, M. Pitschmann et al., Nat. Rev. Phys. 3, 309 (2021).
  13. B. A. Dobrescu and I. Mocioiu, J. High Energy Phys. 11, 005 (2006).
  14. P. Fadeev, Y. V. Stadnik, F. Ficek et al., Phys. Rev. A 99, 022113 (2019).
  15. W. M. Snow, C. Haddock and B. Heacock, Symmetry 2022, 14, 10 (2022).
  16. Y. J. Chen, W. K. Tham, D. E. Krause et al., Phys. Rev. Lett. 116, 221102 (2016).
  17. C. Delaunay, C. Frugiuele, E. Fuchs et al., Phys. Rev. D 96, 115002 (2017).
  18. A. Fajar and H. Mugirahardjo, Atom Indonesia 36, 1 (2010).
  19. V. K. Pecharsky, Fundamentals of Powder Di raction and Structural Characterization of Materials, Springer Science+Business Media, Inc. (2003).
  20. V. F. Sears, Phys. Rep. 141, 281 (1986).
  21. T. M. Sabine, Aust. J. Phys. 38, 507 (1985).
  22. A. Io e, D. L. Jacobson, M. Arif et al., Phys. Rev. A 58, 1476 (1998).
  23. G. C. Li, M. R. Yearian, and I. Sick, Phys. Rev. C 9, 1861 (1974).
  24. J.-M. Sparenberg and H. Leeb, J. Electron Spectros. Relat. Phenomena 129, 315 (2003).
  25. E. Prince, International Tables for Crystallography, Vol. C, Kluwer Acad. Publ. Dortrecht (2004).
  26. C. Flensburg and R. F. Stewart, Phys. Rev. B 60, 1 (1999).
  27. C. Malica and A. Dal Corso, Acta Cryst. A 75, 624 (2019).
  28. В. В. Воронин, И. А. Кузнецов, Д. Д. Шапиро, Письма в ЖЭТФ 107, 3 (2018).
  29. V. V. Voronin, D. D. Shapiro, J. Surf. Investig. 14, S198 (2020) https://link.springer.com/article/10.1134/S1027451020070502.
  30. V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, Phys. Rev. D 77, 034020 (2008).
  31. Y. Kamiya, K. Itagaki, M. Tani et al., Phys. Rev. Lett. 114, 161101 (2015).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences