Formation of Band Gaps for a Spin Wave Signal in YIG Meander Structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A meander waveguide made of an yttrium iron garnet (YIG) film with variation of the profile is studied with a view to the possible control of band bands for surface spin waves (SSWs). The finite element method is used to determine the control mechanism of forbidden band gaps in thin YIG films. The electromagnetic problem is solved, and the dispersion characteristics of spin waves are plotted for various geometrical parameters of the meander. The nature of the change in the frequency ranges of Bragg forbidden band gaps is studied in detail depending on the profile of the meander. It is demonstrated that a three-dimensional spin-wave structure with broken translational symmetry that uses vertical spin-wave transport provides an information signal transmission in a three-dimensional configuration of magnonic networks.

Sobre autores

Yu. Gubanova

Saratov State National Research University

Email: yulya29022095@gmail.com
410012, Saratov, Russia

V. Gubanov

Saratov State National Research University

Email: yulya29022095@gmail.com
410012, Saratov, Russia

E. Beginin

Saratov State National Research University

Email: yulya29022095@gmail.com
410012, Saratov, Russia

A. Sadovnikov

Saratov State National Research University

Autor responsável pela correspondência
Email: yulya29022095@gmail.com
410012, Saratov, Russia

Bibliografia

  1. N. Noginova, V. Gubanov, M. Shahabuddin et al., Appl. Magn. Resonance 52, 749 (2021).
  2. A. V. Sadovnikov, G. Talmelli, G. Gubbiotti et al., J. of Magn. and Magn. Mat. 544, 168670, (2022).
  3. A. V. Chumak, P. Kabos, M. Wu et al., Roadmap on spin-wave computing, JarXiv preprint arXiv 2111.00365, (2021).
  4. С. А. Никитов, А. Р. Сафин, Д. В. Калябин и др., Успехи физических наук, 190, 1009 (2020)
  5. S. A. Nikitov, A. R. Sa n, D. V. Kalyabin et al., Physics-Uspekhi 63, (2020).
  6. K. Vogt, F. Y. Fradin, J. E. Pearson et al., Nature communications 5, 1 (2014).
  7. G. Gubbiotti, A. Sadovnikov, E. Beginin et al., Appl. Phys. Lett. 118, 162405 (2021).
  8. S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, J. of Magn. and Magn. Mat. 236, (2001).
  9. С. А. Никитов, А. Р. Сафин, Д. В. Калябин и др., УФН, 190, 1009 (2020).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023