Hall Effect in Magnetic Tunnel Junctions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have constructed a theory of the Hall effect appearing during the passage of current in a magnetic tunnel junction due to the spin–orbit interaction in an insulator barrier in the approximation of a delta-shaped barrier potential. Both the normal Hall current flowing in metal banks as a result of asymmetric scattering in the tunneling barrier and the anomalous current existing only in the tunneling barrier due to the presence of the spin–orbit interaction in it are taken into account. We have considered the Rashba interaction that can be of intrinsic origin (noncentrosymmetric form of the barrier) or can be induced by an extraneous electric field emerging as a result of application of a potential difference to the barrier. Such a field can reach a value on the order of 109 W/m, which is close to intrinsic atomic fields. The Hall current has both linear and quadratic components in the voltage applied to the tunnel junction. The existence of the nonlinear Hall voltage corresponding to it has been illustrated experimentally in a CoFeB/MgO/Pt tunnel junction, in which the transverse (Hall) voltage has been measured in the Pt layer.

About the authors

E. A Karashtin

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: eugenk@ipmras.ru
603950, Nizhny Novgorod, Russia

N. S Gusev

Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Email: jetp@kapitza.ras.ru
603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia

I. Yu Pashen'kin

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: jetp@kapitza.ras.ru
603950, Nizhny Novgorod, Russia

M. V Sapozhnikov

Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Email: jetp@kapitza.ras.ru
603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia

A. A Fraerman

Institute for Physics of Microstructures, Russian Academy of Sciences

Author for correspondence.
Email: jetp@kapitza.ras.ru
603950, Nizhny Novgorod, Russia

References

  1. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  2. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  3. S. A. Tarasenko, V. I. Perel′, and I. N. Yassievich, Phys. Rev. Lett. 93, 056601 (2004).
  4. A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).
  5. A. Vedyaev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).
  6. A. Vedyaev, N. Ryzhanova, N. Strelkov, M. Titova, M. Chshiev, B. Rodmacq, S. Au ret, L. Cuchet, L. Nistor, and B. Dieny, Phys. Rev. B 95, 064420 (2017).
  7. A. V. Vedyaev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).
  8. С. В. Вонсовский, Магнетизм, Наука, Москва (1971).
  9. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1989).
  10. A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, Phys. Rev. B 36, 5953 (1987).
  11. Е. А. Караштин, ФТТ 64, 1311 (2022).
  12. И. Ю. Пашенькин, М. В. Сапожников, Н. С. Гусев, В. В. Рогов, Д. А. Татарский, А. А. Фраерман, ЖТФ 89, 1732 (2019).
  13. E. A. Karashtin, J. Magn. Magn. Mater. 552, 169193 (2022).
  14. N. S. Gusev, A. V. Sadovnikov, S. A. Nikitov, M. V. Sapozhnikov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).
  15. A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 060404(R) (2002).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences