Studying the Influence of T2O Substitution for H2O on the Dynamic Properties, Density Maximum, and Melting Point of Ice in Terms of the Lattice Dynamics Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An isotopic effect arising from the substitution of superheavy water molecules for normal water molecules in ice (Ih) has been studied by the lattice dynamics method in a quasi-harmonic approximation using a rigid three-point potential modified to reproduce the superheavy water properties. It has been shown that the considerable variation of the vibrational state density upon substituting 12.5, 50, and 100% of water molecules takes place only in the range of libration. The temperature dependence of the superheavy ice density has been calculated, and the density maximum for this ice near 60 K has been predicted. A relationship between the melting point of (T2O + H2O)-ice Ih and the T2O molecule concentration in its structure has been constructed, and this relationship has been found to be linear.

About the authors

V. R Belosludov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: gets@niic.nsc.ru
630090, Novosibirsk, Russia

K. V Gets

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: gets@niic.nsc.ru
630090, Novosibirsk, Russia

R. K Zhdanov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: gets@niic.nsc.ru
630090, Novosibirsk, Russia

Yu. Yu Bozhko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: gets@niic.nsc.ru
630090, Novosibirsk, Russia

E. Kavazoe

Tohoku University;SRM Institute of Science and Technology;Suranaree University of Technology

Author for correspondence.
Email: gets@niic.nsc.ru
980-8579, Sendai, Japan; 30000, Suranari, Mueang Nakhon Ratchasima District, Nakhon Ratchasima, Thailand; SRM Nagar, 603203, Kattankulathur, Kancheepuram District

References

  1. M. Maruyama and R. Ohmura, Can. J.Chem.Eng. 1 (2022).
  2. W.E. Thiessen and A.H. Narten, J. Chem. Phys. Thiessen, 2656 (1982).
  3. S. Herrig, M. Thol, A.H. Harvey, and E.W. Lemmon, J. Phys.Chem.Ref.Data 47, 043102 (2018).
  4. D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC, Boca Raton FL, London (2003), Vol. 84.
  5. П.В. Энкович, В.В. Бражкин, С. Г. Ляпин, Письма в ЖЭТФ 110, 687 (2019).
  6. П. В. Энкович, В. В. Бражкин, С. Г. Ляпин, С.М. Стишов, ЖЭТФ 155, 237 (2019).
  7. C. Vega, J. L. Abascal, M.M. Conde, and J. L. Aragones, Faraday Discuss. 141, 251 (2009).
  8. J. Zielkiewicz, J.Chem. Phys. 123, 104501 (2005).
  9. P.K. Yuet and D. Blankschtein, J. Phys.Chem. B 114, 13786 (2010).
  10. K.M. Dyer, J. S. Perkyns, G. Stell, and B. Montgomery Pettitt, Mol. Phys. 107, 423 (2009).
  11. H. Nada, J.Chem.Phys. 145, 244706 (2016).
  12. C. McBride, J. L. Aragones, E.G. Noya, and C. Vega, Phys.Chem.Chem. Phys. 14, 15199 (2012).
  13. C. McBride, C. Vega, E.G. Noya, R. Ram'ırez, and L.M. Ses'e, J.Chem.Phys. 131, 024506 (2009).
  14. S. Habershon, T.E. Markland, and D.E. Manolopoulos, J.Chem. Phys. 131, 024501 (2009).
  15. В. Р. Белослудов, К. В. Гец, Р. К. Жданов, Ю.Ю. Божко, О.С. Субботин, Письма в ЖЭТФ 116, 313 (2022).
  16. R. V. Belosludov, R. K. Zhdanov, K. V. Gets, Y.Y. Bozhko, V.R. Belosludov, and Y. Kawazoe, J. Phys.Chem. C 124, 18474 (2020).
  17. H. J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, J. Phys.Chem. 91, 6269 (1987).
  18. R.V. Belosludov, R.K. Zhdanov, Y.Y. Bozhko, K.V. Gets, O. S. Subbotin, Y. Kawazoe, and V.R. Belosludov., Energy Fuel. 34, 12771 (2020).
  19. H.A. Lorentz, Ann.Phys. 248, 127 (1881).
  20. D. Berthelot, Comptes rendus hebdomadaires des s'eances de l'Acad'emie des Sciences 126, 1703 (1898).
  21. J.D. Bernal and R.H. Fowler, J.Chem.Phys. 1, 515 (1933).
  22. Р.К. Жданов, В. Р. Белослудов, Ю.Ю. Божко, О.С. Субботин, К.В. Гец, Р.В. Белослудов, Письма в ЖЭТФ 108, 821 (2018).
  23. K.V. Gets, R.K. Zhdanov, Y.Y. Bozhko, and V.R. Belosludov, J.Phys.Chem.C 125, 15659 (2021).
  24. H. B¨ottger, Principles of the theory of lattice dynamics, Academie-Verlag, Berlin (1983).
  25. A.A. Maradudin, E.W. Montroll, G.H. Weiss, and I.P. Ipatova, Theory of lattice dynamics in the harmonic approximation, Academic press, New York (1963), Vol. 3.
  26. K. R¨ottger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs, Acta Crystallogr. B: Struct. Sci. 50, 644 (1994).
  27. A.D. Fortes, Acta Crystallogr. B: Struct. Sci.Cryst. Eng.Mater. 74, 196 (2018).
  28. C. P. Herrero and R. Ram'ırez, J.Chem.Phys. 134, 094510 (2011).
  29. R. Ram'ırez and C. P. Herrero, J.Chem.Phys. 133, 144511 (2010).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences