High Optical Harmonics Generation on Solid Surfaces Irradiated by Mid-IR Femtosecond Laser Pulses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtained the spectra of high optical harmonics produced by subrelativistic femtosecond pulses on the surface of polystyrene, CaF2, BK7, and Al solid targets. High harmonics of up to the 51st order of radiation with central 3.85 µm wavelength were observed. The highest order harmonics were generated from the polystyrene target surface. The harmonics energy versus their numbers is shown to fit well a decaying power law with the exponent ranging from 4 to 8/3.

About the authors

A. V Mitrofanov

Russian Quantum Center; Faculty of Physics, M.V. Lomonosov Moscow State University; ILIT RAS – Branch of FSRC “Crystallography and Photonics” RAS

Email: sbd@rqc.ru
143025, Skolkovo, Moscow oblast, Russia; 119992, Moscow, Russia; 140700, Shatura, Moscow oblast, Russia

M. V Rozhko

Russian Quantum Center; Faculty of Physics, M.V. Lomonosov Moscow State University;

Email: sbd@rqc.ru
143025, Skolkovo, Moscow oblast, Russia; 119992, Moscow, Russia;

M. M Nazarov

National Research Center “Kurchatov Institute”

Email: sbd@rqc.ru
123182, Moscow, Russia

E. E Serebryannikov

Russian Quantum Center; Faculty of Physics, M.V. Lomonosov Moscow State University;

Email: sbd@rqc.ru
143025, Skolkovo, Moscow oblast, Russia; 119992, Moscow, Russia;

A. B Fedotov

Russian Quantum Center; Faculty of Physics, M.V. Lomonosov Moscow State University;

Email: sbd@rqc.ru
143025, Skolkovo, Moscow oblast, Russia; 119992, Moscow, Russia;

D. A Sidorov-biryukov

Russian Quantum Center; Faculty of Physics, M.V. Lomonosov Moscow State University; National Research Center “Kurchatov Institute”

Author for correspondence.
Email: sbd@rqc.ru
143025, Skolkovo, Moscow oblast, Russia; 119992, Moscow, Russia; 123182, Moscow, Russia

References

  1. N. Blombergen and Y. R. Shen, Phys. Rev. 141, 298 (1966).
  2. N. H. Burnett, H. A. Baldis, M. C. Richardson et al., Appl. Phys. Lett. 31, 172 (1977).
  3. R. L. Carman, D. W. Forslund, and J. M. Kindel, Phys. Rev. Lett. 46, 29 (1981).
  4. B. Bezzerides, R. D. Jones, and D. W. Forslund, Phys. Rev. Lett. 49, 202 (1982).
  5. С. А. Ахманов, С. М. Гладков, Н. И. Коротеев и др., Препринт №5, Физический факультет МГУ, Москва (1988).
  6. A. B. Fedotov, S. M. Gladkov, N. I. Koroteev et al., J. Opt. Soc. Amer. B 8, 363 (1991).
  7. A. B. Fedotov, A. N. Naumov, V. P. Silin et al., Phys. Lett. A 271, 407 (2000).
  8. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).
  9. P. Gibbon, Phys. Rev. Lett. 76, 50 (1996).
  10. A. Tarasevitch, K. Lobov, C. Wu¨nsche et al., Phys. Rev. Lett. 98, 103902 (2007).
  11. V. V. Strelkov, A. A. Gonoskov, I. A. Gonoskov et al. Phys. Rev. Lett. 107, 043902 (2011).
  12. A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim et al., Phys. Rev. E 84, 046403 (2011).
  13. А. В. Коржиманов, А. А. Гоносков, Е. А. Хазанов и др., УФН 181, 9 (2011).
  14. U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445 (2009).
  15. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
  16. P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
  17. K. Y. Kim, A. J. Taylor, J. H. Glownia et al., Nature Photon. 2, 605 (2008).
  18. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko et al., Opt. Lett. 43, 5571 (2018).
  19. P. Colosimo, G. Doumy, C. I. Blaga et al., Nature Phys. 4, 386 (2008).
  20. A. D. Koulouklidis, C. Gollner, V. Shumakova et al., Nature Commun. 11, 292 (2020).
  21. A. Englesbe, J. Lin, J. Nees et al., Appl. Opt. 60, G113 (2021).
  22. Ю. М. Михайлова, В. Т. Платоненко, С. Г. Рыкованов, Письма в ЖЭТФ 81, 703 (2005).
  23. В. Т. Платоненко, А. Ф. Стержантов, Письма в ЖЭТФ 91, 77 (2010).
  24. C. Vozzi, F. Calegari, E. Benedetti et al., Opt. Lett. 32, 2957 (2007).
  25. G. Andriukaitis, T. Balˇciu¯nas, S. Aliˇsauskas et al., Opt. Lett. 36, 2755 (2011).
  26. E. E. Serebryannikov and A. M. Zheltikov, Phys. Rev. Lett. 113, 043901 (2014).
  27. T. Popmintchev, M.-C. Chen, D. Popmintchev et al., Science 336, 1287 (2012).
  28. А. В. Митрофанов, Д. А. Сидоров-Бирюков, А. А. Воронин и др., УФН 185, 97 (2015).
  29. А. В. Митрофанов, Д. А. Сидоров-Бирюков, М. В. Рожко и др., Письма в ЖЭТФ 112, 22 (2020).
  30. B. Dromey, M. Zepf, A. Gopal et al., Nature Phys. 2, 456 (2006).
  31. T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006).
  32. A. V. Mitrofanov, A. A. Voronin, M. V. Rozhko et al., ACS Photonics 8, 1988 (2021).
  33. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov et al., Optica 3, 299 (2016).
  34. K. Werner, M. G. Hastings, A. Schweinsberg et al., Opt. Express 27, 2867 (2019).
  35. A. A. Lanin, E. A. Stepanov, A. V. Mitrofanov et al., Opt. Lett. 44, 1888 (2019).
  36. A. V. Mitrofanov, D. A. Sidorov-Biryukov, P. B. Glek et al., Opt. Lett. 45, 750 (2020).
  37. F. Qu'er'e, C. Thaury, H. George et al., Plasma Phys. Control. Fusion 50, 124007 (2008).
  38. F. Dollar, P. Cummings, V. Chvykov et al., Phys. Rev. Lett. 110, 175002 (2013).
  39. С. Thaury and F. Quere, J. Phys. B: Atom. Mol. Opt. Phys. 43, 213001 (2010).
  40. N. Beier, T. Nguyen, J. Lin et al., New J. Phys. 21, 043052 (2019).
  41. M. R. Edwards and J. M. Mikhailova, Sci. Rep. 10, 5154 (2020).
  42. S. Bhadoria, T. Blackburn, A. Gonoskov et al., Phys. Plasmas 29, 093109 (2022).
  43. H. Hamster, A. Sullivan, S. Gordon et al., Phys. Rev. Lett. 71, 2725 (1993).
  44. C. Li, M. L. Zhou, W. J. Ding et al., Phys. Rev. E 84, 036405 (2011).
  45. P. B. Glek and A. M. Zheltikov, J. Appl. Phys. 131, 103104 (2022).
  46. G. Q. Liao, Y. T. Li, Y. H. Zhang et al., Phys. Rev. Lett. 116, 205003 (2016).
  47. P. B. Glek and A. M. Zheltikov, Sci. Rep. 12, 7660 (2022).
  48. Y. T. Li, C. Li, M. L. Zhou et al., Appl. Phys. Lett. 100, 254101 (2012).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences