THE TEST OF THE CLASSICALITY CONCEPT IN THE ENTANGLED STATES OF NEUTRAL PSEUDOSCALAR MESONS USING THREE TIME WIGNER INEQUALITIES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work we have formulated the Classicality concept. Using this concept theWigner inequalities which are dependent on three moments of time are obtained. The possibility of experimental tests of violations of these inequalities on the pure and mixed flavor states of

About the authors

A. Yu. Efimova

ETH Physics department

Email: efimovaa@student.ethz.ch
Zurich, Switzerland

N. V. Nikitin

Lomonosov Moscow State University, Physics Faculty; Skobeltsyn Institute of Nuclear Physics; NRC ”Kurchatov Institute” — ITEP; The Moscow Institute of Physics and Technology

Email: Nikolai.Nikitine@cern.ch
Moscow, Russia; Moscow, Russia; Moscow, Russia; Dolgoprudny, Russia

References

  1. D. Bohm, Phys. Rev. 85, 166 (1952).
  2. D. Bohm, Phys. Rev. 85, 180 (1952).
  3. D. Frauchiger and R. Renner, Nature Commun. 9, 3711 (2018).
  4. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
  5. J. S. Bell, Physics 1, 195 (1964); Rev. Mod. Phys. 38, 447 (1966).
  6. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
  7. W. M. de Muynck, Phys. Lett. A 114, 65 (1986).
  8. E. Wigner, Am. J. Phys. 38, 1005 (1970).
  9. P. H. Eberhard, Nuovo Cimento B 46, 392 (1978).
  10. N. Herbert, Found. Phys. 12, 1171 (1982).
  11. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).
  12. D. Dieks, Phys. Lett. A 92, 271 (1982).
  13. N. Nikitin and K. Toms, Moscow Univ. Phys. 75, 541 (2020).
  14. Д. И. Блохинцев, Принципиальные вопросы квантовой механики (Наука, Москва, 1966).
  15. И. Р. Пригожин, Конец определенности (РХД, Ижевск 2001).
  16. B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
  17. S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
  18. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009).
  19. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014); Rev. Mod. Phys. 86, 839 (Erratum) (2014).
  20. J.-M. A. Allen, J. Barrett, D. C. Horsman, C. M. Lee, and R. W. Spekkens, Phys. Rev. X 7, 031021 (2017).
  21. D. Rosset, J. -D. Bancal, and N. Gisin, J. Phys. A: Math. Theor. 47, 424022 (2014).
  22. Quantum [Un]Speakables: From Bell to Quantum Information, Ed. by R. A. Bertlmann and A. Zeilinger (Springer, 2002).
  23. Quantum [Un]Speakables II: Half a Century of Bell’s Theorem, Ed. by R. A. Bertlmann and A. Zeilinger (Springer, 2016).
  24. N. D. Mermin, Am. J. Phys. 58, 731 (1990).
  25. A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
  26. A. J. Leggett, J. Phys. Condens. Matter 14, R415 (2002).
  27. A. J. Leggett, Rep. Prog. Phys. 71, 022001 (2008).
  28. J. Kofler and C. Brukner, Phys. Rev. Lett. 101, 090403 (2008).
  29. N. Harrigan and R. W. Spekkens, Found. Phys. 40, 125 (2010).
  30. N. Nikitin and K. Toms, Phys. Rev. A 100, 062314 (2019).
  31. D. Saha, S. Mal, P. K. Panigrahi, and D. Home, Phys. Rev. A 91, 032117 (2015).
  32. J. A. Formaggio, D. I. Kaiser, M. M. Murskyj , and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016).
  33. P. Privitera and F. Selleri, Phys. Lett. B 296, 261 (1992).
  34. F. Uchiyama, Phys. Lett. A 231, 295 (1997).
  35. A. Bramon and M. Nowakowski, Phys. Rev. Lett. 83, 1 (1999).
  36. R. A. Bertlmann and B. C. Hiesmayr, Phys. Rev. A 63, 062112 (2001).
  37. S. P. Baranov, J. Phys. G Nucl. Part. Phys. 35, 075002 (2008).
  38. N. Nikitin and K. Toms, Phys. Rev. A 82, 032109 (2010).
  39. M. Fabbrichesi, R. Floreanini, and G. Panizzo, Phys. Rev. Lett. 127, 161801 (2021).
  40. A. J. Barr, Phys. Lett. B 825, 136866 (2022).
  41. C. Severi, C. Degli, E. Boschi, F. Maltoni, and M. Sioli, Eur. Phys. J. C 82, p.285 (2022).
  42. J. A. Aguilar-Saavedra and J. A. Casas, Eur. Phys. J. C 82, p.666 (2022).
  43. J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J. M. Moreno, ”Testing entanglement and Bell inequalities in H→ZZ”, Phys. Rev. D 107, 016012 (2023).
  44. M. M. Altakach, P. Lamba, F. Maltoni, K. Mawatari, and K. Sakurai, Phys. Rev. D 107, 093002 (2023).
  45. N. Nikitin and K. Toms, Phys. Rev. A 95, 052103 (2017).
  46. M. F. Pusey, J. Barrett, and T. Rudolph, Nat. Phys. 8, 475 (2012).
  47. N. Nikitin, V. Sotnikov, and K. Toms, Phys. Rev. D 92, 016008 (2015).
  48. N. Nikitin, V. Sotnikov, and K. Toms, Phys. Rev. A 90, 042124 (2014).
  49. A. Efimova, J. Phys.: Conf. Ser. 1439, 012008 (2020).
  50. R. F. Werner, Phys. Rev. A. 40, 4277 (1989).
  51. N. Gisin, Phys. Lett. A 154, 201 (1991).
  52. S. Popescu and D. Rohrlich, Phys. Lett. A166, 293 (1992).
  53. P. H. Eberhard, Phys. Rev. A 47, R747(R) (1993).
  54. W. De Baere, Lett. Nuovo Cimento 39, 234 (1984).
  55. W. De Baere, Lett. Nuovo Cimento 40, 488 (1984).
  56. S. Storz, J. Schar, A. Kulikov, P. Magnard, and P. Kurpiers, Nature 617, 265 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences