Thermal preference in sympatric bichirs: senegal bichir polypterus senegalus and saddled bichir p. Endlicheri (polypteridae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time for Claudistia it is shown that Senegal bichir Polypterus senegalus and saddled bichir P. endlicherii exhibit thermopreferential behavior, the features of which differ between the two species. In the thermal-gradient field, the Senegal bichir in comparison to the saddled bichir is characterized by the lower motor activity, narrower range of the preferred temperatures, shifted toward the higher values (32–35 vs. 22–34°C), as well as relatively high mean preferred temperature (33.9 vs. 29.1°C), weighted for the time of occupancy of different temperature zones by the fishes. The differences of thermopreferential behavior we found could be caused by preference for different biotopes of the studied species, the distribution ranges of which overlap significantly.

Full Text

Restricted Access

About the authors

V. V. Zdanovich

Lomonosov Moscow State University

Author for correspondence.
Email: zdanovich@mail.ru
Russian Federation, Moscow

V. V. Sataeva

Lomonosov Moscow State University

Email: zdanovich@mail.ru
Russian Federation, Moscow

A. O. Kasumyan

Lomonosov Moscow State University

Email: zdanovich@mail.ru
Russian Federation, Moscow

References

  1. Голованов В.К. 2013. Эколого-физиологические закономерности распределения и поведения пресноводных рыб в термоградиентных условиях // Вопр. ихтиологии. Т. 53. № 3. С. 286–314. https://doi.org/10.7868/S0042875213030016
  2. Зданович В.В. 1999. Некоторые особенности роста молоди мозамбикской тиляпии Oreochromis mossambicus при постоянных и переменных температурах // Там же. Т. 39. № 1. С. 105–110.
  3. Константинов А.С., Зданович В.В. 1993. Некоторые характеристики поведения молоди рыб в термоградиентном поле // Вестн. МГУ. Сер. 16. Биология. № 1. С. 32–37.
  4. Литвинов А.С. 1985. Временная и пространственная изменчивость полей температур в водохранилищах // Гидрофизические процессы в реках и водохранилищах. М.: Наука. С. 279–283.
  5. Armstrong J.B., Schindler D.E., Ruff C.P. et al. 2013. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources // Ecology. V. 94. № 9. P. 2066–2075. https://doi.org/10.1890/12-1200.1
  6. Ayoade A.A., Akponine J.A. 2016. Growth and reproductive parameters of Polypterus senegalus Cuvier 1829 in Eleiyele Lake // N. Y. Sci. J. V. 9. № 11. P. 27–31. https://doi.org/10.7537/marsnys091116.05
  7. Ayoade A.A., Adeyemi S.A., Ayedun A.S. 2018. Food and feeding habits of Hepsetus odoe and Polypterus senegalus in Eleyele Lake, southwestern Nigeria // Trop. Freshw. Biol. V. 27. № 1. P. 43–53. https://doi.org/10.4314/tfb.v27i1.4
  8. Beamish F.W.H. 1970. Influence of temperature and salinity acclimation on temperature preferenda of the euryhaline fish Tilapia nilotica // J. Fish. Res. Board Can. V. 27. № 7. P. 1209–1214. https://doi.org/10.1139/f70-143
  9. Beitinger T.L., Fitzpatrick L.C. 1979. Physiological and ecological correlates of preferred temperature in fish // Am. Zool. V. 19. № 1. P. 319–329. https://doi.org/10.1093/icb/19.1.319
  10. Boltz J.M., Siemen M.J., Stauffer J.R. Jr. 1987. Influence of starvation on the preferred temperature of Oreochromis mossambicus (Peters) // Arch. Hydrobiol. V. 110. № 1. P. 143–146. https://doi.org/10.1127/archiv-hydrobiol/110/1987/143
  11. Caissie D. 2006. The thermal regime of rivers: a review // Freshw. Biol. V. 51. № 8. P. 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
  12. Coutant C.C. 1977. Compilation of temperature preference data // J. Fish. Res. Board. Can. V. 34. № 5. P. 739–745. https://doi.org/10.1139/f77-115
  13. Froese R., Pauly D. (eds.). 2023. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 10/2023).
  14. Heath A.G., Turner B.J., Davis W.P. 1993. Temperature preferences and tolerances of three fish species inhabiting hyperthermal ponds on mangrove islands // Hydrobiologia. V. 259. № 1. P. 47–55. https://doi.org/10.1007/BF00005964
  15. Lachance S., Magnan P., FitzGerald G.J. 1987. Temperature preferences of three sympatric sticklebacks (Gasterosteidae) // Can. J. Zool. V. 65. № 6. P. 1573–1576. https://doi.org/10.1139/z87-245
  16. Larsson S. 2005. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta – implications for their niche segregation // Environ. Biol. Fish. V. 73. № 1. P. 89–96. https://doi.org/10.1007/s10641-004-5353-4
  17. Lévêque C. 1997. Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. Cambridge: Cambridge Univ. Press, 452 p.
  18. Lowney C.L. 2000. Stream temperature variation in regulated rivers: evidence for a spatial pattern in daily minimum and maximum magnitudes // Water Resour.Res. V. 36. № 10. P. 2947–2955. https://doi.org/10.1029/2000WR900142
  19. Magnuson J.J., Crowder L.B., Medvick P.A. 1979. Temperature as an ecological resource // Am. Zool. V. 19. № 1. P. 331–343. https://doi.org/10.1093/icb/19.1.331
  20. Moritz T., Lalèyè P.R. 2018. Fishes of the Pendjari National Park (Benin, West Africa) // Bull. Fish Biol. V. 18. № 1/2. P. 1–57.
  21. Near T.J., Dornburg A., Tokita M. et al. 2014. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes // Evolution. V. 68. № 4. P. 1014–1026. https://doi.org/10.1111/evo.12323
  22. Nivelle R., Gennotte V., Kalala E.J.K. et al. 2019. Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal // PLOS One. V. 14. № 2. Article e0212504. https://doi.org/10.1371/journal.pone.0212504
  23. Nwonumara G.N., Okogwu O.I. 2021. Seasonal dynamics in water quality and phytoplankton of four tropical rivers in Ebonyi State, southeastern Nigeria // Afr. J. Aquat. Sci. V. 46. № 4. P. 402–413. https://doi.org/10.2989/16085914.2021.1924110
  24. Ohlberger J., Staaks G.B.O., Petzoldt T. et al. 2008. Physiological specialization by thermal adaptation drives ecological divergence in a sympatric fish species pair // Evol. Ecol. Res. V. 10. P. 1173–1185.
  25. Paaijmans K.P., Jacobs A.F.G., Takken W. et al. 2008. Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya // Hydrol. Process. V. 22. № 24. P. 4789–4801. https://doi.org/10.1002/hyp.7099
  26. Quarcoopome T., Amevenku F.Y.K., Ansa-Asare O.D. 2008. Fisheries and limnology of two reservoirs in Northern Ghana // West Afr. J. Appl. Ecol. V. 12. № 1. N. p. https://doi.org/10.4314/wajae.v12i1.45757
  27. Raji A., Saidu A.K., Maryam A.T. 2004. Preliminary studies on food and feeding habits of Polypterus endlicheri and Polypterus senegalus in Lake Chad // Proc. 18th Ann. Сonf. Fish. Soc. Nigeria. Owerri: FISON. P. 186–193.
  28. Reynolds W.W., Casterlin M.E. 1978. Complementarity of thermoregulatory rhythms in Micropterus salmoides and M. dolomieui // Hydrobiologia. V. 60. № 1. P. 89–91. https://doi.org/10.1007/BF00018689
  29. Ridgway M.S., Bell A.H., Lacombe N.A. et al. 2022. Thermal niche and habitat use by co-occurring lake trout (Salvelinus namaycush) and brook trout (S. fontinalis) in stratified lakes // Environ. Biol. Fish. V. 106. № 5. P. 941–955. https://doi.org/10.1007/s10641-022-01368-9
  30. Santi S., Rougeot C., Toguyeni A. et al. 2017. Temperature preference and sex differentiation in African catfish, Clarias gariepinus // J. Exp. Zool. A. Ecol. Integr. Physiol. V. 327. № 1. P. 28–37. https://doi.org/10.1002/jez.2066
  31. Sataeva V.V., Kasumyan A.O. 2022. Orosensory preferences and feeding behavior of Cladistia: a comparison of gray bichir Polypterus senegalus and saddle bichir P. endlicherii (Polypteridae) // J. Ichthyol. V. 62. № 7. Р. 1501–1520. https://doi.org/10.1134/S003294522204021X
  32. Stauffer J.R. Jr. 1986. Effects of salinity on preferred and lethal temperatures of Mozambique tilapia, Oreochromis mossambicus (Peters) // J. Am. Water Resour. Assoc. V. 22. № 2. P. 205–208. https://doi.org/10.1111/j.1752-1688.1986.tb01876.x
  33. Stauffer J.R. Jr., Vann D.K., Hocutt C.H. 1984. Effects of salinity on preferred and lethal temperatures of the blackchin tilapia Sarotherodon melanotheron // Ibid. V. 20. № 5. P. 771–775. https://doi.org/10.1111/j.1752-1688.1984.tb04760.x
  34. Stauffer J.R. Jr., Boltz J.M., Boltz S.E. 1989. Temperature preference of the redbelly tilapia, Oreochromis zilli (Gervais) // Arch. Hydrobiol. V. 114. № 3. P. 453–456. https://doi.org/10.1127/archiv-hydrobiol/114/1989/453
  35. Suzuki D., Brandley M.C., Tokita M. 2010. The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes // BMC Evol. Biol. V. 10. Article 21. https://doi.org/10.1186/1471-2148-10-21
  36. Žák J., Reichard M., Gvoždík L. 2018. Limited differentiation of fundamental thermal niches within the killifish assemblage from shallow temporary waters // J. Therm. Biol. V. 78. P. 257–262. https://doi.org/10.1016/j.jtherbio.2018.10.015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of occurrence (–◆–) and duration of stay (–◼–) of the Senegal polypterus Polypterus senegalus in temperature zones of the thermogradient field at different time intervals after the start of the experiment, h: a – 0.25, b – 0.5, c – 1, d – 2, d – 3, f – 4, g – 24, h – 48.

Download (441KB)
3. Fig. 2. Frequency of occurrence and duration of stay of Endlicher's polypterus Polypterus endlicherii in temperature zones of the thermogradient field at different time intervals after the start of the experiment, h: a – 0.5, b – 1, c – 2, d – 3, d – 4, f – 6, g – 24, h – 48. For designations, see Fig. 1.

Download (396KB)

Copyright (c) 2025 Russian Academy of Sciences