Орган обоняния у анемоновых рыб рода Amphiprion (Amphiprioninae, Pomacentridae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучена морфология органа обоняния у пяти видов анемоновых рыб рода Amphiprion: A. polymnus, A. clarkii, A. frenatus, A. perideraion и A. ocellaris. У всех рыб имеется одна ноздря, обонятельная розетка стреловидного типа, отсутствует вторичная складчатость на обонятельных складках, имеется два вентиляционных мешка (этмоидальный и более крупный лакримальный). Розетка располагается на медиальной (A. clarkii и A. perideraion) или вентромедиальной (A. polymnus, A. frenatus, A. ocellaris) стороне обонятельной полости, число складок в розетке увеличивается по мере роста рыб. Наибольшее общее число складок у A. polymnus – 24. В розетке у большинства амфиприонов обнаружены интеркалярные (у четырёх видов) и дихотомические (у трёх видов) складки, крайне редко встречающиеся у других рыб. Нетипичные складки возникают в онтогенезе рыб позже обычных, но в разных частях розетки, их численность у амфиприонов различается, у отдельных особей A. polymnus они преобладают. Уклон медиальной и латеральной сторон розетки в сторону входных отверстий вентиляционных мешков (A. polymnus, A. frenatus) рассматривается как структурная адаптация, улучшающая водообмен у поверхности обонятельных складок и получение рыбами запаховой информации. Связь между устройством органа обоняния и эврибионтностью амфиприонов, их специализацией и прочностью ассоциации с симбионтными актиниями не выявлена. Изложено представление об эволюционном тренде от просто устроенного органа обоняния (A. clarkii) к морфологически более сложному (A. polymnus и A. frenatus) в роде Amphiprion после раннего отделения от общего ствола подрода Actinicola (A. ocellaris, A. percula).

Full Text

Restricted Access

About the authors

Н. И. Пащенко

Московский государственный университет

Author for correspondence.
Email: visitgrusha@gmail.com
Russian Federation, Москва

Л. Т. К. Оань

Приморское отделение Совместного российско-вьетнамского тропического научно-исследовательского и технологического центра

Email: visitgrusha@gmail.com
Viet Nam, Нячанг

А. О. Касумян

Московский государственный университет; Институт проблем экологии и эволюции РАН

Email: visitgrusha@gmail.com
Russian Federation, Москва; Москва

References

  1. Астахов Д.А. 2002. Видовой состав анемоновых рыб (Perciformes, Pomacentridae) и симбиотических актиний (Cnidaria, Actiniaria) провинции Ханьхоа (Южный Вьетнам) // Вопр. ихтиологии. Т. 42. № 1. С. 41–55.
  2. Астахов Д.А. 2015. Материалы по фауне анемоновых рыб (Pomacentridae, Amphiprioninae) и их симбиотических актиний (Cnidaria, Actiniaria) на рифах островов Ли Сон (Южно-Китайское море, Центральный Вьетнам) // Там же. Т. 55. № 5. С. 618–621. https://doi.org/10.7868/S0042875215050033
  3. Астахов Д.А., Савинкин О.В., Пономарев С.А. 2016. Фауна анемоновых рыб (Pomacentridae, Amphiprioninae) и их симбиотических актиний (Cnidaria, Actiniaria) на рифах островов Фу Куи, Кон Сон и Ан Тхой (Южно-Китайское море, Южный Вьетнам и Сиамский залив) и обзор фауны этих групп из прибрежных вод Вьетнама // Там же. Т. 56. № 6. С. 670–684. https://doi.org/10.7868/S0042875216060011
  4. Касумян А.О., Пащенко Н.И., Оань Л.Т.К. 2021. Морфология органа обоняния анабаса Anabas testudineus (Anabantidae, Perciformes) // Зоол. журн. Т. 100. № 1. С. 40–56. https://doi.org/10.31857/S0044513420110045
  5. Пащенко Н.И., Касумян А.О. 2017. Развитие органа обоняния в онтогенезе карповых рыб (Cyprinidae, Teleostei) // Вопр. ихтиологии. Т. 57. Вып. 1. С. 96–111. https://doi.org/10.7868/S0042875217010106
  6. Пащенко Н.И., Касумян А.О. 2019. Морфология и вентиляция органа обоняния у индо-тихоокеанской рыбы-сержанта Abudefduf vaigiensis (Pomacentridae, Perciformes) // Там же. Т. 59. № 2. С. 154–161. https://doi.org/10.1134/S0042875219010132
  7. Пащенко Н.И., Оань Л.Т.К., Касумян А.О. 2022. Морфология и вентиляция органа обоняния у шестиполосой рыбы-сержанта Abudefduf sexfasciatus (Pomacentridae) // Там же. Т. 62. № 3. С. 282–293. https://doi.org/10.31857/S0042875222030158
  8. Allen G.R. 1972. The anemonefishes: their classification and biology. Neptune City: T.F.H. Publ., 288 p.
  9. Allen G.R. 1980. Anemonefishes of the world: species, care and breeding. Mentor: Aquarium Systems, 104 p.
  10. Allen G.R. 1991. Damselfishes of the World. Melle: Mergus, 271 p.
  11. Allen G.R. 2000. Family Pomacentridae (damselfishes) // Ruffles Bull. Zool. Suppl. 8. P. 626–627.
  12. Almany G.R., Berumen M.L., Thorrold S.R. et al. 2007. Local replenishment of coral reef fish populations in a marine reserve // Science. V. 316. № 5825. P. 742–744. https://doi.org/10.1126/science.1140597
  13. Arvedlund M., Kavanagh K. 2009. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems // Ecological connectivity among tropical coastal ecosystems. Dordrecht: Springer. P. 135–184. https://doi.org/10.1007/978-90-481-2406-0_5
  14. Arvedlund M., Nielsen L.E. 1996. Do the anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) imprint themselves to their host sea anemone Heteractis magnifica (Anthozoa: Actinidae)? // Ethology. V. 102. № 2. P. 197–211. https://doi.org/10.1111/j.1439-0310.1996.tb01118.x
  15. Arvedlund M., McCormick M.I., Fautin D.G., Bildsøe M. 1999. Host recognition and possible imprinting in the anemonefish Amphiprion melanopus (Pisces: Pomacentridae) // Mar. Ecol. Prog. Ser. V. 188. P. 207–218. https://doi.org/10.3354/meps188207
  16. Arvedlund M., Bundgaard I., Nielsen L.E. 2000a. Host imprinting in anemonefishes (Pisces: Pomacentridae): does it dictate spawning site preferences? // Environ. Biol. Fish. V. 58. № 2. P. 203–213. https://doi.org/10.1023/A:1007652902857
  17. Arvedlund M., Larsen K., Winsor H. 2000b. The embryonic development of the olfactory system in Amphiprion melanopus (Perciformes: Pomacentridae) related to the host imprinting hypothesis // J. Mar. Biol. Assoc. U.K. V. 80. № 6. P. 1103–1109. https://doi.org/10.1017/S0025315400003179
  18. Arvedlund M., Brolund T.M., Nielsen L.E. 2003. Morphology and cytology of the olfactory organs in small juvenile Dascyllus aruanus and Amphiprion ocellaris (Pisces: Pomacentridae) // Ibid. V. 83. № 6. P. 1321–1326. https://doi.org/10.1017/S0025315403008762
  19. Biology of Damselfishes. 2016. Boca Raton: CRC Press, 340 p. https://doi.org/10.1201/9781315373874
  20. Astakhov D.A. 2021. Gap in the Continuous Range of Amphiprion clarkii (Pomacentridae) in the Gulf of Thailand (South China Sea). Possible Causes // J. Ichthyol. V. 61. № 6. P. 808–817. https://doi.org/10.1134/S0032945221060023
  21. Bridge T., Scott A., Steinberg D. 2012. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia // Coral Reefs. V. 31. № 4. P. 1057–1062. https://doi.org/10.1007/s00338-012-0916-x
  22. Brolund T.M., Nielsen L.E., Arvedlund M. 2003. Do juvenile Amphiprion ocellaris Cuvier (Pisces: Pomacentridae) recognize conspecifics by chemical or visual cues? // J. Mar. Biol. Assoc. U.K. V. 83. № 5. P. 1127–1136. https://doi.org/10.1017/S0025315403008385h
  23. Burke da Silva K., Nedosyko A. 2016. Sea anemones and anemonefish: a match made in Heaven // The Cnidaria, past, present and future. Cham: Springer. P. 425–438. https://doi.org/10.1007/978-3-319-31305-4_27
  24. Buston P.M. 2004. Territory inheritance in clownfish // Proc. R. Soc. Lond. B. V. 271. Suppl. 4. P. S252–S254. https://doi.org/10.1098/rsbl.2003.0156
  25. Buston P.M., García M.B. 2007. An extraordinary life span estimate for the clown anemonefish Amphiprion percula // J. Fish Biol. V. 70. № 6. P. 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x
  26. Cleveland A., Verde E.A., Lee R.W. 2011. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae // Mar. Biol. V. 158. № 3. P. 589–602. https://doi.org/10.1007/s00227-010-1583-5
  27. Colleye O., Vandewalle P., Lanterbecq D. et al. 2011. Interspecific variation of calls in clownfishes: degree of similarity in closely related species // BMC Evol. Biol. V. 11. Article 365. https://doi.org/10.1186/1471-2148-11-365
  28. Colleye O., Iwata E., Parmentier E. 2016. Clownfishes // Biology of damselfishes. Boca Raton: CRC Press. P. 246–266. https://doi.org/10.1201/9781315373874
  29. Daly M., Brugler M.R., Cartwright P. et al. 2007. The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus // Zootaxa. V. 1668. P. 127–182. https://doi.org/10.5281/zenodo.180149
  30. Dixson D.L., Jones G.P., Munday P.L. et al. 2008. Coral reef fish smell leaves to find island homes // Proc. R. Soc. B. V. 275. № 1653. P. 2831–2839. https://doi.org/10.1098/rspb.2008.0876
  31. Dixson D.L., Munday P.L., Pratchett M., Jones G.P. 2011. Ontogenetic changes in responses to settlement cues by Anemonefish // Coral Reefs. V. 30. № 4. P. 903–910. https://doi.org/10.1007/s00338-011-0776-9
  32. Døving K.B. 1986. Functional properties of the fish olfactory system // Progress in Sensory Physiology. V. 6. Berlin; Heidelberg: Springer. P. 39–104. https://doi.org/10.1007/978-3-642-70411-6_2
  33. Døving K.B., Kasumyan A.O. 2008. Chemoreception // Fish Larval Physiology. Boca Raton: CRC Press. P. 331–394. https://doi.org/10.1201/9780429061608-15
  34. Elliott J.K., Mariscal R.N. 2001. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment // Mar. Biol. V. 138. № 1. P. 23–36. https://doi.org/10.1007/s002270000441
  35. Elliott J.K., Lougheed S.C., Bateman B. et al. 1999. Molecular phylogenetic evidence for the evolution of specialization in anemone fishes // Proc. R. Soc. Lond. B. V. 266. № 1420. P. 677–685. https://doi.org/10.1098/rspb.1999.0689
  36. Fautin D.G., Allen G.R. 1997. Field guide to anemonefishes and their host sea anemones. Perth: West. Aust. Mus., 159 p.
  37. Feeney W.E., Brooker R.M. 2017. Anemonefishes // Curr. Biol. V. 27. № 1. P. R6–R8. https://doi.org/10.1016/j.cub.2016.07.046
  38. Froese R., Pauly D. (eds.). 2023. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 03/2023).
  39. Garwood R.J., Behnsen J., Ramsey A.T. et al. 2020. The functional nasal anatomy of the pike, Esox lucius L. // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 244. Article 110688. https://doi.org/10.1016/j.cbpa.2020.110688
  40. Hattori A. 1995. Coexistence of two anemonefishes, Amphiprion clarkii and A. perideraion, which utilize the same host sea anemone // Environ. Biol. Fish. V. 42. № 4. P. 345–353. https://doi.org/10.1007/BF00001464
  41. Hobbs J.-P.A., Frisch A.J., Ford B.M. et al. 2013. Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes // PLоS One. V. 8. № 8. Article e70966. https://doi.org/10.1371/journal.pone.0070966
  42. Holl A. 1965. Vergleichende morphologische und histologische Untersuchungen am Geruchsorgan der Knochenfische // Z. Morph. Ökol. Tiere. V. 54. № 6. P. 707–782. https://www.jstor.org/stable/43262175
  43. Iwata E., Manbo J. 2013. Territorial behaviour reflects sexual status in groups of false clown anemonefish (Amphiprion ocellaris) under laboratory conditions // Acta Ethol. V. 16. № 2. P. 97–103. https://doi.org/10.1007/s10211-012-0142-0
  44. Jones G.P., Planes S., Thorrold S.R. 2005. Coral reef fish larvae settle close to home // Curr. Biol. V. 15. № 14. P. 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061
  45. Jones G.P., Srinivasan M., Galbraith G.F. et al. 2022. Saving Nemo. Extinction risk, conservation status, and effective management strategies for anemonefishes // Evolution, development and ecology of anemonefishes: model organisms for marine science. Boca Raton: CRC Press. P. 285–297. https://doi.org/10.1201/9781003125365-30
  46. Kasumyan A.O. 2004. The olfactory system in fish: structure, function, and role in behavior // J. Ichthyol. V. 44. Suppl. 2. P. S180–S223.
  47. Kavanagh K.D., Alford R.A. 2003. Sensory and skeletal development and growth in relation to the duration of the embryonic and larval stages in damselfishes (Pomacentridae) // Biol. J. Linn. Soc. V. 80. № 2. P. 187–206. https://doi.org/10.1046/j.1095-8312.2003.00229.x
  48. Klann M., Mercader M., Salis P. et al. 2022. Anemonefishes // Handbook of marine model organisms in experimental biology. Boca Raton: CRC Press. P. 443–464. https://doi.org/10.1201/9781003217503-24
  49. Kleerekoper H. 1969. Olfaction in fishes. Bloomington: Ind. Univ. Press, 222 p.
  50. Lara M.R. 2008. Development of the nasal olfactory organs in the larvae, settlement-stages and some adults of 14 species of Caribbean reef fishes (Labridae, Scaridae, Pomacentridae) // Mar. Biol. V. 154. № 1. P. 51–64. https://doi.org/10.1007/s00227-007-0899-2
  51. Litsios G., Pearman P.B., Lanterbecq D. et al. 2014. The radiation of the clownfishes has two geographical replicates // J. Biogeogr. V. 41. № 11. P. 2140–2149. https://doi.org/10.1111/jbi.12370
  52. Madduppa H.H., Timm J., Kochzius M. 2018. Reduced genetic diversity in the clown anemonefish Amphiprion ocellaris in exploited reefs of Spermonde Archipelago, Indonesia // Front. Mar. Sci. V. 5. Article 80. https://doi.org/10.3389/fmars.2018.00080
  53. Manassa R.P., Dixson D.L., McCormick M.I., Chivers D.P. 2013a. Coral reef fish incorporate multiple sources of visual and chemical information to mediate predation risk // Anim. Behav. V. 86. № 4. P. 717–722. https://doi.org/10.1016/j.anbehav.2013.07.003
  54. Manassa R.P., McCormick M.I., Chivers D.P., Ferrari M.C.O. 2013b. Social learning of predators in the dark: understanding the role of visual, chemical and mechanical information // Proc. R. Soc. B. V. 280. № 1765. Article 20130720. https://doi.org/10.1098/rspb.2013.0720
  55. Miyagawa K., Hidaka T. 1980. Amphiprion clarkii juvenile: innate protection against and chemical attraction by symbiotic sea anemones // Proc. Jpn. Acad. Ser. B. V. 56. № 6. P. 356–361. https://doi.org/10.2183/pjab.56.356
  56. Miyagawa-Kohshima K., Odoriba S., Okabe D. et al. 2014. Embryonic learning of chemical cues via the parents’ host in anemonefish (Amphiprion ocellaris) // J. Exp. Mar. Biol. Ecol. V. 457. P. 160–172.
  57. http://doi.org/10.1016/j.jembe.2014.04.004
  58. Moyer J.T. 1980. Influence of temperate waters on the behavior of the tropical anemonefish Amphiprion clarkii at Miyake-jima, Japan // Bull. Mar. Sci. V. 30. Suppl. 1. P. 261–272.
  59. Moyer J.T., Steene R.C. 1979. Nesting behavior of the anemonefish Amphiprion polymnus // Jpn. J. Ichthyol. V. 26. № 2.
  60. http://doi.org/10.11369/jji1950.26.209
  61. Murphy B.F., Leis J.M., Kavanagh K.D. 2007. Larval development of the Ambon damselfish Pomacentrus amboinensis, with a summary of pomacentrid development // J. Fish. Biol. V. 71. № 2. P. 569–584. https://doi.org/10.1111/j.1095-8649.2007.01524.x
  62. Nelson J.S. 2006. Fishes of the World. Hoboken: John Wiley and Sons, 601 p.
  63. Nguyen H.-T.T., Tran A.-N.T., Ha L.T.L. et al. 2019. Host choice and fitness of anemonefish Amphiprion ocellaris (Perciformes: Pomacentridae) living with host anemones (Anthozoa: Actiniaria) in captive conditions // J. Fish Biol. V. 94. № 6. P. 937–947. https://doi.org/10.1111/jfb.13910
  64. Nguyen H.-T.T., Dang B.T., Glenner H., Geffen A.J. 2020. Cophylogenetic analysis of the relationship between anemonefish Amphiprion (Perciformes: Pomacentridae) and their symbiotic host anemones (Anthozoa: Actiniaria) // Mar. Biol. Res. V. 16. № 2. P. 117–133. https://doi.org/10.1080/17451000.2020.1711952
  65. Pryor S.H., Hill R., Dixson D.L. et al. 2020. Anemonefish facilitate bleaching recovery in a host sea anemone // Sci. Rep. V. 10. Article 18586. https://doi.org/10.1038/s41598-020-75585-6
  66. Randall J.E., Allen G.R., Steene R.C. 1997. Fishes of the Great Barrier Reef and Coral Sea. Bathurst: Crawford House Publ., 580 р.
  67. Ricciardi F., Boyer M., Ollerton J. 2010. Assemblage and interaction structure of the anemonefish-anemone mutualism across the Manado region of Sulawesi, Indonesia // Environ. Biol. Fish. V. 87. № 4. P. 333–347. https://doi.org/10.1007/s10641-010-9606-0
  68. Roopin M., Chadwick N.E. 2009. Benefits to host sea anemones from ammonia contributions of resident anemonefish // J. Exp. Mar. Biol. Ecol. V. 370. № 1–2. P. 27–34. https://doi.org/10.1016/j.jembe.2008.11.006
  69. Roux N., Lecchini D. 2015. Clownfish chemically recognized their sea-anemone host at settlement // Vie Milieu. V. 65. № 1. P. 17–20.
  70. Roux N., Salis P., Lambert A. et al. 2019. Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris) // Devel. Dyn. V. 248. № 7. P. 545–568. https://doi.org/10.1002/dvdy.46
  71. Shuman C.S., Hodgson G., Ambrose R.F. 2005. Population impacts of collecting sea anemones and anemonefish for the marine aquarium trade in the Philippines // Coral Reefs. V. 24. № 4. P. 564–573. https://doi.org/10.1007/s00338-005-0027-z
  72. Tang K.L., Stiassny M.L.J., Mayden R.L., DeSalle R. 2021. Systematics of Damselfishes // Ichthyol. Herpetol. V. 109. № 1. 258–318. https://doi.org/10.1643/i2020105
  73. Yamamoto M. 1982. Comparative morphology of fish olfactory organ in teleosts // Chemoreception in fishes N.Y.: Elsevier. P. 39–59.
  74. Yamamoto M., Ueda K. 1979. Comparative morphology of fish olfactory epithelium. X. Perciformes, Beryciformes, Scorpaeniformes, and Pleuronectiformes // J. Fac. Sci. Univ. Tokyo. V. 14. P. 273–297.
  75. Zeiske E., Theisen B., Breucker H. 1992. Structure, development, and evolutionary aspects of the peripheral olfactory system // Fish chemoreception. Dordrecht: Springer. P. 13–39. https://doi.org/10.1007/978-94-011-2332-7_2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the olfactory organ in amphiprions: a, b – Amphiprion clarkii TL 11.0 cm; c – A. polymnus TL 8.7 cm, d – A. frenatus TL 9.7 cm, d – A. ocellaris TL 5.3 cm; e – A. perideraion TL 8.0 cm, top left view. Here and in Fig. 2: H – nostril; G – eye; HF – upper jaw. Scale, mm: a – 5.0; b, d, d – 1.0; c – 0.5; e – 2.0.

Download (2MB)
3. Fig. 2. The nostril of amphiprions: a, b – A. polymnus TL 12.5 and 2.43 cm; c – A. polymnus TL 14.0 cm, view from the olfactory cavity; d – Amphiprion clarkii TL 11.0 cm; d – A. frenatus TL 9.7 cm; e – A. perideraion TL 8.0 cm. Directions (↔): D–V – dorsoventral, R–K – rostrocaudal. Scale: 0.5 mm.

Download (1MB)
4. Fig. 3. Diagram of the olfactory socket of Amphiprion clarkii (a) and A. polymnus (b): C – septa of the central fold; folds: (*) – forked, (+) – unrelated to the septa.

Download (255KB)
5. Fig. 4. Olfactory socket in amphiprions: a – Amphiprion clarkii TL 11.0 cm, b – A. perideraion TL 8.0 cm, c – A. ocellaris TL 5.3 cm, d – A. polymnus TL 8.0 cm; d – A. frenatus TL 9.7, 10.0 and 12.5 cm, respectively. LM, EM – holes lacrimal and ethmoidal ventilation bags; N – nasale; (→) – intercalary folds, (↑→) – dichotomous fold. The remaining symbols are shown in Fig. 2, 3. Scale, mm: a, b – 0.5; c–i – 1.0.

Download (1MB)
6. Fig. 5. The shape of the folds located in the caudal part of the olfactory rosette: a, b – Amphiprion clarkii, A. frenatus and A. ocellaris; c, d – A. polymnus; e, e – A. perideraion; a, c, d – side view of the fold; b, d, e – vertical profile of the fold.

Download (242KB)
7. 6. Atypical folds in the olfactory socket of Amphiprion polymnus: a, b – horizontally dichotomous folds with narrowly and widely diverging blades, respectively; c – vertically dichotomous fold, d–e – intercalary fold (→) at different stages of formation.

Download (250KB)
8. Fig. 7. Atypical folds in the olfactory socket of amphiprions: a, b, c, d – Amphiprion polymnus TL 8.2, 12.0, 9.2 and 8.0 cm, respectively; d – A. frenatus TL 9.8 cm; e – A. perideraion TL 7.0 cm; (*) – thickening of the distal parts of the folds, (▽) – unusual secondary folding. The rest of the designations are shown in Fig. 2, 4. Scale: 1.0 mm.

Download (1MB)
9. Рис. 8. Обитает в обособленной зоне от наземной части тела (TL) у амфиприона полимнуса (●, --), A. clarkii (▲, ---) и A. frenatus (■, − · −).

Download (313KB)
10. Fig. 9. Phylogenetic relationships of fish of the genus Amphiprion (according to: Tang et al., 2021); an increase in the number of asterisks (★) reflects the morphological complexity of the olfactory organ in the studied species.

Download (508KB)

Copyright (c) 2024 Russian Academy of Sciences