Resilience of Fraxinus excelsior (Oleaceae) and Quercus robur (Fagaceae) stands in fragmented forests of Western Tatarstan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article discusses the resilience of Quercus robur L. and Fraxinus excelsior L. stands located in the northeastern part of their geographic range. The as a model, a forest outlier of the Central Russian – Volga linden-oak forests with admixture of European ash growing in Tatarstan to the west of the Volga River is used. The total forest cover of the western Tatarstan is 12 %, although in the 18-th century it was almost three times as much as today. The forests surrounded by arable lands have functioned as forest outliers for almost two centuries. The average size of most forest areas does not exceed 500–1000 ha. The model forest is one of two relatively large ones measuring 11,000 ha in size. The dynamics of the taxation characteristics of forest stands for six dates of the state forest inventory (1926, 1947, 1958, 1980, 2011 and 2020) was analyzed. The resilience of forest stands is considered as the ability to restore its presence and numbers after disturbances (clearcutting) and under stress factors (climatic and anthropogenic). The zonally determined forest composition and the main phytocenotic strategies of species are taken as standards. It is shown that at the beginning of the studied period, species were characterized by sustainable phytocenotic strategies: Quercus robur as an upper-storey primary foundation species (edificator), Fraxinus excelsior as a forest stand secondary foundation species (assectator), but these strategies have changed over time. By constructing generalized linear models (GLM), factors significantly associated with these changes are determined. The effects of forest fragmentation in a sparsely forested region aggravate the decrease in resistance to unfavorable climatic conditions, what is common to all species growing at the distribution range margins. In the forest outliers, Quercus robur loses its ability to compete and act as a stable edificator, when the internal integrity of habitats is disturbed due to the economic activities. This provides assectators, including Fraxinus excelsior, with ability to pass from assectators to edificators. Fraxinus excelsior exhibit selectivity in relation to the relief and position relative to the forest boundaries, which allows it to offset the limiting effect of unfavorable climatic conditions. However, only relatively large forests occupying watershed spaces can provide such an opportunity, which are almost nonexistent in a heavily developed region. Therefore, even with the ability to show a progressive strategy, the species cannot find new suitable habitats.

全文:

受限制的访问

作者简介

G. Shaykhutdinova

Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: gshaykhu@gmail.com
俄罗斯联邦, Kazan

T. Nikonenkova

Kazan (Volga Region) Federal University

Email: gshaykhu@gmail.com
俄罗斯联邦, Kazan

E. Konstantinova

Kazan (Volga Region) Federal University

Email: gshaykhu@gmail.com
俄罗斯联邦, Kazan

T. Rogova

Kazan (Volga Region) Federal University

Email: gshaykhu@gmail.com
俄罗斯联邦, Kazan

参考

  1. Sementovsky V. N. 1963. [Patterns of the platform relief morphology]. Kazan. 170 p. (In Russian)
  2. Butakov G. P. 1993. [Relief as one of the farm management factors]. — In: [The green book of the Republic of Tatarstan]. Kazan. P. 36–45. (In Russian)
  3. [Vegetation of the European part of the USSR]. 1980. Leningrad. 429 p. (In Russian)
  4. EURFORGEN. European forest genetic resources programme. https://www.euforgen.org/ (Accessed 14.12.2024).
  5. Vrangel V. V. 1841. [The history of the forest legislation of the Russian Empire: With the addition of an essay on the history of Russian shipbuilding forests]. St. Petersburg. 156 p. https://www.prlib.ru/item/416814 (In Russian)
  6. Sokolov S. Ya., Svyazeva O. A., Kubli V. A. 1977. Quercus robur L. 1977. — In: Areographia arborum fruticumque URSS. Vol. 1. Taxaceae–Aristolochiaceae. Leningrad. P. 122–125. (In Russian)
  7. Eaton E., Caudullo G., Oliveira S., de Rigo D. 2016. Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. — In: European atlas of forest tree species. Luxembourg. P. 160–163. https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Quercus_robur_petraea.pdf
  8. Sokolov S. Ya., Svyazeva O. A., Kubli V. A. 1986. Fraxinus exselsior п. 1986. — In: Areographia arborum fruticumque URSS. Vol. 3. Leguminosae–Caprifoliaceae. Leningrad. P. 121–122. (In Russian)
  9. Beck P., Caudullo G., Tinner W., de Rigo D. 2016. Fraxinus excelsior in Europe: distribution, habitat, usage and threats. — In: European atlas of forest tree species. Luxembourg. P. 98–99. https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Fraxinus_excelsior.pdf
  10. [The Red book of the Republic of Tatarstan (animals, plants, fungi)]. 2006. Kazan. 832 p. https://www.plantarium.ru/page/redbook/id/1.html (Accessed 14.12.2024) (In Russian)
  11. [The Red Book of the Republic of Tatarstan (animals, plants, fungi)]. 2016. Kazan. 759 p. https://www.plantarium.ru/page/redbook/id/266.html (Accessed 14.12.2024) (In Russian)
  12. Kuznetsov N. А. 2015. European ash (Fraxinus exselsior) in the Republic of Tatarstan. — Vestnik of Kazan State Agrarian University. 3(37): 115–117. https://www.elibrary.ru/vjtlof (In Russian)
  13. Istomina Ya. G., Kaplina N. F. 2018. 60-year dynamics of the upland stands of Quercus robur in the southern forest-steppe in connection with thinning and mass decline. — Vestnik of Volga State University of Technology: Ser.: Forest. Ecology. Nature Management. 2(38): 41–51. https://doi.org/10.15350/2306-2827.2018.2.41 (In Russian)
  14. Tsaralunga V. V. 2005. Tragedy of Russian oak forests. — Lesnoy Zhurnal (Russian Forestry Journal). 6: 23–30. https://lesnoizhurnal.ru/issuesarchive/? ELEMENT_ID=1896 (In Russian)
  15. Purjaev A. S., Zaripov I. N., Petrov V. A. 2019. Mid-Volga oak woods: condition, regeneration and conservation. — Forestry Information. 3: 190–198. https://doi.org/10.24419/LHI.2304-3083.2019.3.16 (In Russian)
  16. Lõhmus A., Runnel K. 2014. Ash dieback can rapidly eradicate isolated epiphyte populations in production forests: A case study. — Biol. Conserv. 169: 185–188. https://doi.org/10.1016/j.biocon.2013.11.031
  17. Mitchell R. J., Beaton J. K., Bellamy P. E., Broome A., Chetcuti J., Eaton S., Ellis C. J., Gimona A., Harmer R., Hester A. J., Hewison R. L., Hodgetts N. G., Iason G. R., Kerr G., Littlewood N. A., Newey S., Potts J. M., Pozsgai G., Ray D., Sim D. A., Stockan J. A., Taylor A. F. S., Woodward S. 2014. Ash dieback in the UK: A review of the ecological and conservation implications and potential management options. — Biol. Conserv. 175: 95–109. https://doi.org/10.1016/j.biocon.2014.04.019
  18. Brown N., Vanguelova E., Parnell S., Broadmeadow S., Denman S. 2018. Predisposition of forests to biotic disturbance: Predicting the distribution of acute oak decline using environmental factors. — For. Ecol. Manag. 407: 145–154. https://doi.org/10.1016/j.foreco.2017.10.054
  19. Mitchell R. J., Bellamy P. E., Ellis C. J., Hewison R. L., Hodgetts N. G., Iason G. R., Littlewood N. A., Newey S., Stockan J. A., Taylor A. F. S. 2019. Collapsing foundations: The ecology of the British oak, implications of its decline and mitigation options. — Biol. Conserv. 233: 316–327. https://doi.org/10.1016/j.biocon.2019.03.040
  20. Denman S., Brown N., Vanguelova E., Crampton B. 2022. Chapter 14 – Temperate oak declines: Biotic and abiotic predisposition drivers. — In: Forest Microbiology. Vol. 2: Forest Tree Health. Academic Press. P. 239–263. https://doi.org/10.1016/B978-0-323-85042-1.00020-3
  21. Marçais B., Kosawang C., Laubray S., Kjær E., Kirisits T. 2022. Chapter 13 – Ash dieback. — In: Forest Microbiology. Vol. 2: Forest Tree Health. Academic Press. P. 215–237. https://doi.org/10.1016/B978-0-323-85042-1.00022-7
  22. [Map of forests of the Chuvash and Mari Autonomous Regions and the Tatar Republic according to the survey carried out by the XI forest management district in 1921–1922. Ca.: 1 inch: 4 versts. On 9 sheets]. State Archive of the Republic of Tatarstan. Fund Р2016. Ser. 10. File 1. http://www.etomesto.ru/map-kazan_lesa-tatarii-1922/ (Accessed 14.12.2024) (In Russian)
  23. Boyko F. F. 1976. [Changes in the forest cover of the Tatar ASSR as a result of human impact]. — In: [Problems of sectoral and complex geography]. Kazan. P. 179–184. (In Russian)
  24. Murcia C. 1995. Edge effects in fragmented forests: implications for conservation. — Trends Ecol. Evol. 10(2): 58–62. https://doi.org/10.1016/S0169-5347(00)88977-6
  25. Peh K. S. H., Lin Y., Luke S. H., Foster W. A., Turner E. C. 2014. Forest fragmentation and ecosystem function. — In: Global Forest Fragmentation. Wallingford. P. 96–115. https://doi.org/10.1079/9781780642031.0096
  26. Fahrig L. 2013. Rethinking patch size and isolation effects: The habitat amount hypothesis. — J. Biogeogr. 40(9): 1649–1663. https://doi.org/10.1111/jbi.12130
  27. Hanski I. 2015. Habitat fragmentation and species richness. — J. Biogeogr. 42(5): 989–993. https://doi.org/10.1111/jbi.12478
  28. Frelich L. E., Jõgiste K., Stanturf J. A., Parro K., Baders E. 2018. Natural disturbances and forest management: Interacting patterns on the landscape. — In: Ecosystem Services from Forest Landscapes. Springer, Cham. P. 221–248. https://doi.org/10.1007/978-3-319-74515-2_8
  29. Bāders E., Krišāns O., Donis J., Elferts D., Jaunslaviete I., Jansons Ā. 2020. Norway spruce survival rate in two forested landscapes, 1975–2016. — Forests. 11(7): 745. https://doi.org/10.3390/f11070745
  30. Lloret F., Hurtado P., Espelta J. M., Jaime L., Nikinmaa L., Lindner M., Martínez-Vilalta J. 2024. ORF, an operational framework to measure resilience in social-ecological systems: the forest case study. — Sustain. Sci. 19(5): 1579–1593. https://doi.org/10.1007/s11625-024-01518-1
  31. Ermolaev О. P., Igonin М. Е., Bubnov А. U., Pavlova S. V. 2007. [Landscapes of the Republic of Tatarstan. Regional landscape and environmental analysis]. Kazan. 411 p. (In Russian)
  32. Voronov А. G. 1973. [Geobotany]. Moscow. 382 p. (In Russian)
  33. Bobrovsky М. V. 2002. [Kozelsk abatis forests (ecological and historical essay)]. Kaluga. 92 p. (In Russian)
  34. Kruchonok A. V., Anoshenko B. Yu., Bedulenko M. A., Titok V. V. 2018. Environmental analysis of habitats of artificial cenopopulations of rare and endangered plants. — Proceedings of the National Academy of Sciences of Belarus. Biological series. 63(1): 20–26. https://doi.org/10.29235/1029-8940-2018-63-1-20-26 (In Russian)
  35. Kalitkin N. N. 2011. [Numerical methods. Course book]. St. Petersburg. 592 p. (In Russian)
  36. McCullagh P., Nelder J. A. 1989. Generalized linear models. London, New York. 526 р. https://doi.org/10.1201/9780203753736
  37. Papke L. E., Wooldridge J. M. 1996. Econometric methods for fractional response variables with an application to 401(k) plan participation rates. — J. Appl. Economet. 11(6): 619–632. https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1
  38. [Order of the State Forestry Committee of the USSR of 17.08.1978 № 114 “On approval of optimal logging ages for the major forest-forming species in different regions of the country”]. (In Russian)
  39. [Order of the Federal Forestry Agency of 09.04.2015 № 105 (revised on 02.07.2015) “On establishing the age of logging”. https://rulaws.ru/acts/Prikaz-Rosleshoza-ot-09.04.2015-N-105 (Accessed 14.12.2024) (In Russian)
  40. Rabotnov Т. А. 1992. [Phytocenology: A textbook]. Moscow. 352 p. (In Russian)
  41. Dobrowolska D., Hein S., Oosterbaan A., Wagner S., Clark J., Skovsgaard J. P. 2011. A review of European ash (Fraxinus excelsior L.): implications for silviculture. — Forestry: Int. J. For. Res. 84(2): 133–148. https://doi.org/10.1093/forestry/cpr001
  42. Chebotarev P. А., Chebotareva V. V., Storozhenko V. G. 2016. Structure and health of oak forests in Tellerman experimental forest entity. — Russ. J. For. Sci. (Lesovedenie). 5: 375–382. https://elibrary.ru/wmukdh (In Russian)
  43. Evstigneev О. I., Murashev I. А., Korotkov V. N. 2017. Wind dispersal and range spread of tree seeds in East-European forests. — Russ. J. For. Sci. (Lesovedenie). 1: 45–52. https://elibrary.ru/xryyrt (In Russian)
  44. Kuussaari M., Bommarco R., Heikkinen R. K., Helm A., Krauss J., Lindborg R., Öckinger E., Pärtel M., Pino J., Rodà F., Stefanescu C., Teder T., Zobel M., Steffan-Dewenter I. 2009. Extinction debt: a challenge for biodiversity conservation. — Trends Ecol. Evol. 24(10): 564–571. https://doi.org/10.1016/j.tree.2009.04.011

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geographical location of the studied objects: a – location of the studied forest in the west of the Republic of Tatarstan; b – location of model compartments in the Kaibitsky forestу of Tatarstan.

下载 (544KB)
3. Fig. 2. Dynamics of the forest stand taxation indicators of the major species within the limits of the model compartment 47 of Rusakovsky section of the Kaibitsky forestry of Tatarstan: a – average tree layer composition; b – average timber stock, m3/ha; c – average age of the major species, years. X-axis – inventory dates, years; y-axis – values of forest stand taxation indicators; 1 – Quercus robur, 2 – Tilia cordata, 3 – Fraxinus еxcelsior, 4 – Ulmus laevis, Acer platanoides, 5 – Salix sp., 6 – Populus tremula, 7 – Pinus sylvestris, 8 – Betula pendula.

下载 (137KB)
4. Fig. 3. Dynamics of the total area of forest allotments with Fraxinus excelsior (a) and Quercus robur (b) stands in different model compartments. X-axis – inventory dates, years; y-axis – the total area of forest allotments with presence of the species, ha.

下载 (185KB)
5. Fig. 4. Dynamics of the total area of forest allotments with Fraxinus excelsior (a) and Quercus robur (b) stands of specific age classes. X-axis – inventory dates, years; y-axis – distribution of the total area of forest stands by age classes, ha; legend – age classes.

下载 (121KB)
6. Fig. 5. Dynamics of the forest allotments area in which Fraxinus excelsior (a) and Quercus robur (b) stands successfully pass from one age class to the successive one. X-axis – periods between inventory dates (including interpolated), years; y-axis – the share of allotments area in which the forest stand has successfully passed from one age class to the successive one.

下载 (114KB)
7. Fig. 6. Efficiency of the transition of Fraxinus excelsior (a) and Quercus robur (b) forest stands to the successive age classes. X-axis – age classes, years; y-axis – the share of forest allotments area in which the forest stand has successfully passed from one age class to the successive one.

下载 (142KB)
8. Fig. 7. Distribution of Fraxinus excelsior by forest compartments (2011 inventory data) and landscape elements.

下载 (422KB)
9. Fig. 8. Dynamics of the number of allotments in model compartments by the dates of inventory. X-axis – inventory dates, years; y-axis – the number of allotments in compartments, pcs.

下载 (78KB)

版权所有 © Russian Academy of Sciences, 2025